167
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Long-term floating control-released intravesical preparation of 5-fluorouracil for the local treatment of bladder cancer

, , &
Pages 1343-1350 | Received 17 Sep 2016, Accepted 28 Mar 2017, Published online: 27 Apr 2017

References

  • Nossier AI, Eissa S, Ismail MF, et al. Direct detection of hyaluronidase in urine using cationic gold nanoparticles: a potential diagnostic test for bladder cancer. Biosens Bioelectron. 2014;54:7–14.
  • Zhou DH, Zhang G, Gan ZH. c(RGDfK) decorated micellar drug delivery system for intravesical instilled chemotherapy of superficial bladder cancer. J Control Release. 2013;169:204–210.
  • Jeong KC, Kim KT, Seo HH, et al. Intravesical Instillation of c-MYC Inhibitor KSI-3716 suppresses orthotopic bladder tumor growth. J Urology. 2014;191:510–518.
  • Akiou O, Naoto O, Kenzo K, et al. Drug eruption due to intravesical instillations of both epirubicin and mitomycin C. J Dermatol. 2009;36:419–422.
  • Catherine LV, Nathalie RL, Michael H, et al. Efficacy of paclitaxel released from bio-adhesive polymer microspheres on model superficial bladder cancer. J Urology. 2004;171:1324–1329.
  • Zhang D, Sun P, Li P, et al. A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette–Guérin in the treatment of bladder cancer. Biomaterials. 2013;34:10258–10266.
  • Lin TS, Wu JH, Zhao XZ, et al. In situ floating hydrogel for intravesical delivery of adriamycin without blocking urinary tract. J Pharm Sci. 2014;103:927–936.
  • Shruti GS, Banerjee R. Intravesical drug delivery: challenges, current status, opportunities and novel strategies. J Control Release. 2010;148:147–159.
  • Jan B, Glen P, Juliane H, et al. Development of a mucoadhesive nanoparticulate drug delivery system for a targeted drug release in the bladder. Int J Pharm. 2011;416:339–345.
  • Takashi N, Masafumi F, Megumi H, et al. Nanoparticulation of BCG-CWS for application to bladder cancer therapy. J Control Release. 2014;176:44–53.
  • Zheng YL, Yang WL, Wang CC, et al. Nanoparticles based on the complex of chitosan and polyaspartic acid sodium salt: preparation, characterization and the use for 5-fluorouracil delivery. Eur J Pharm Biopharm. 2007;67:621–631.
  • Zhuo RX, Du B, Lu ZR. In vitro release of 5-fluorouracil with cyclic core dendritic polymer. J Control Release. 1999;57:249–257.
  • Chen WC, Liaw CC, Chuang CK, et al. Concurrent cisplatin, 5-fluorouracil, leucovorin, and radiotherapy for invasive bladder cancer. Int J Radiat Oncol Biol Phys. 2003;56:726–733.
  • Simeonova M, Velichkova R, Ivanova G, et al. Poly(butylcyanoacrylate) nanoparticles for topical delivery of 5-fluorouracil. Int J Pharm. 2003;263:133–140.
  • Çiftçi K, Hincal AA, Kaş HS, et al. Microspheres of 5-fluorouracil using poly(dl-lactic acid): in vitro release properties and distribution in mice after i.v. administration. Eur J Pharm Sci. 1994;1:249–258.
  • Neutsch L, Wambacher M, Wirth EM, et al. UPEC biomimickry at the urothelial barrier: lectin-functionalized PLGA microparticles for improved intravesical chemotherapy. Int J Pharm. 2013;450:163–176.
  • Rotman M, Aziz H, Porrazzo M, et al. Treatment of advanced transitional cell carcinoma of the bladder with irradiation and concomitant 5-fluorouracil infusion. Int J Radiat Oncol Biol Phys. 1990;18:1131–1137.
  • Mahmoud MI, Salma AH, Tawfique, Mahmoud MM. Liposomal diltiazem HCl as ocular drug delivery system for glaucoma. Drug Dev Ind Pharm. 2014;40:765–773.
  • Haupt M, Thommes M, Heidenreich A, et al. Lipid-based intravesical drug delivery systems with controlled release of trospium chloride for the urinary bladder. J Control Release. 2013;170:161–166.
  • Koennings S, Garcion E, Faisant N, et al. In vitro investigation of lipid implants as a controlled release system for interleukin-18. Int J Pharm. 2006;314:145–152.
  • Kreye F, Siepmann F, Zimmer A, et al. Controlled release implants based on cast lipid blends. Eur J Pharm Sci. 2011;43:78–83.
  • Sax G, Kessler B, Wolf E, et al. In-vivo biodegradation of extruded lipid implants in rabbits. J Control Release. 2012;163:195–202.
  • Even MP, Young K, Winter G, et al. In vivo investiga tion of twin-screw extruded lipid implants for vaccine delivery. Eur J Pharm Biopharm 2014;87:338–346.
  • Kreye F, Siepmann F, Siepmann J. Drug release mechanisms of compressed lipid implants. Int J Pharm. 2011;404:27–35.
  • Kreye F, Siepmann F, Willart JF, et al. Drug release mechanisms of cast lipid implants. Eur J Pharm Biopharm. 2011;78:394–400.
  • Sax G, Winter G. Mechanistic studies on the release of lysozyme from twin-screw extruded lipid implants. J Control Release. 2012;163:187–194.
  • Kokkona M, Kallinteri P, Fatouros D, et al. Stability of SUV liposomes in the presence of cholate salts and pancreatic lipases: effect of lipid composition. Eur J Pharm Sci. 2000;9:245–252.
  • Whitaker JF. A rapid and specific method for the determination of pancreatic lipase in serum and urine. Clin Chim Acta. 1973;44:133–138.
  • Chapus C, Rovery M, Sarda L, et al. Minireview on pancreatic lipase and colipase. Biochimie. 1988;70:1223–1233.
  • Junge W, Leybold K. Detection of colipase in serum and urine of pancreatitis patients. Clin Chim Acta. 1982;123:293–302.
  • Lawson AM, Madigan MJ, Shortland D, et al. Rapid diagnosis of Zellweger syndrome and infantile Refsum’s disease by fast atom bombardment-mass spectrometry of urine bile salts. Clin Chim Acta. 1986;161:221–231.
  • Comte B, Franceschi C, Sadoulet MO, et al. Detection of bile salt-dependent lipase, a 110 kDa pancreatic protein, in urines of healthy subjects. Kidney Int. 2006;69:1048–1055.
  • Abubakr O, Nur Jun S. Zhang Captopril floating and/or bioadhesive tablets: design and release kinetics. Drug Dev Ind Pharm. 2010;26:965–969.
  • Tomotaka S, Hidalgo IJ, Furubayashi T, et al. The transnasal delivery of 5-fluorouracil to the rat brain is enhanced by acetazolamide (the inhibitor of the secretion of cerebrospinal fluid). Int J Pharm. 2009;377:85–91.
  • Heo MY, Piao ZZ, Kim TW, et al. Effect of solubilizing and microemulsifying excipients in polyethylene glycol 6000 solid dispersion on enhanced dissolution and bioavailability of ketoconazole. Arch Pharm Res. 2005;28:604–611.
  • Thaned P, Natalie JM, Ian GT. Melted glyceryl palmitostearate (GPS) pellets for protein delivery. Int J Pharm. 2004;271:53–62.
  • Vogelhuber W, Magni E, Gazzaniga A, et al. Monolithic glyceryl trimyristate matrices for parenteral drug release applications. Eur J Pharm Biopharm. 2003;55:133–138.
  • Guse C, Koennings S, Kreye F, et al. Drug release from lipid-based implants: elucidation of the underlying mass transport mechanisms. Int J Pharm. 2006;314:137–144.
  • Siden R, Flowers WE, Levy RJ. Epicardial propranolol administration for ventricular arrhythmias in dogs: matrix formulation and characterization. Biomaterials. 1992;13:764–770.
  • Gameline EC, Danquechin-Dorval EM, Dumesnil YF. Relationship between 5-fluorouracil (5-FU) dose intensity and therapeutic response in patients with advanced colorectal cancer receiving infusional therapy containing 5-FU. Cancer. 1996;77:441–451.
  • Kulthe SS, Bahekar JK, Godhani CC, et al. Modulated release of 5-fluorouracil from pH-sensitive and colon targeted pellets: an industrially feasible approach. Drug Dev Ind Pharm. 2013;39:138–145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.