215
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Gold nanoparticles capped with benzalkonium chloride and poly (ethylene imine) for enhanced loading and skin permeability of 5-fluorouracil

, ORCID Icon, &
Pages 1780-1791 | Received 28 Feb 2017, Accepted 01 Jun 2017, Published online: 21 Jun 2017

References

  • Kennedy B, Theologides A. The role of 5-fluorouracil in malignant disease. Ann Intern Med. 1961;55:719–730.
  • Ceilley RI. Mechanisms of action of topical 5-fluorouracil: review and implications for the treatment of dermatological disorders. J Dermatolog Treat. 2012;23:83–89.
  • Macdonald JS. Toxicity of 5-fluorouracil. Oncology (Williston Park, NY). 1999;13:33–34.
  • Gupta RR, Jain SK, Varshney M. AOT water-in-oil microemulsions as a penetration enhancer in transdermal drug delivery of 5-fluorouracil. Colloids Surf B Biointerfaces. 2005;41:25–32.
  • Singh BN, Singh RB, Singh J. Effects of ionization and penetration enhancers on the transdermal delivery of 5-fluorouracil through excised human stratum corneum. Int J Pharm. 2005;298:98–107.
  • Fang JY, Hung CF, Fang YP, et al. Transdermal iontophoresis of 5-fluorouracil combined with electroporation and laser treatment. Int J Pharm. 2004;270:241–249.
  • Paolino D, Cosco D, Muzzalupo R, et al. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int J Pharm. 2008;353:233–242.
  • Venuganti VVK, Perumal OP. Effect of poly(amidoamine) (PAMAM) dendrimer on skin permeation of 5-fluorouracil. Int J Pharm. 2008;361:230–238.
  • Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59:748–758.
  • Safwat MA, Soliman GM, Sayed D, et al. Gold nanoparticles enhance 5-fluorouracil anticancer efficacy against colorectal cancer cells. Int J Pharm. 2016;513:648–658.
  • Huang Y, Yu F, Park YS, et al. Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials. 2010;31:9086–9091.
  • Kumar A, Zhang X, Liang XJ. Gold nanoparticles: Emerging paradigm for targeted drug delivery system. Biotechnol Adv. 2013;31:593–606.
  • Dreaden EC, Alkilany AM, Huang X, et al. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41:2740–2779.
  • Sylvestre JP, Kabashin AV, Sacher E, et al. Nanoparticle size reduction during laser ablation in aqueous solutions of cyclodextrins. Lasers and Applications in Science and Engineering 2004;5339:84–92.
  • Nisar M, Khan SA, Qayum M, et al. Robust synthesis of ciprofloxacin-capped metallic nanoparticles and their urease inhibitory assay. Molecules. 2016;21:411.
  • Tom RT, Suryanarayanan V, Reddy PG, et al. Ciprofloxacin-protected gold nanoparticles. Langmuir. 2004;20:1909–1914.
  • Casciaro B, Moros M, Rivera-Fernández S, et al. Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1-21)NH2 as a reliable strategy for antipseudomonal drugs. Acta Biomater. 2017;47:170–181.
  • Sun S, Liang N, Kawashima Y, et al. Hydrophobic ion pairing of an insulin-sodium deoxycholate complex for oral delivery of insulin. Int J Nanomedicine. 2011;6:3049.
  • Song WJ, Du JZ, Sun TM, et al. Gold nanoparticles capped with polyethyleneimine for enhanced siRNA delivery. Small. 2010;6:239–246.
  • Yang L, Cui F, Shi K, et al. Design of high payload PLGA nanoparticles containing melittin/sodium dodecyl sulfate complex by the hydrophobic ion-pairing technique. Drug Dev Ind Pharm. 2009;35:959–968.
  • Feng L, De Dille A, Jameson VJ, et al. Improved potency of cisplatin by hydrophobic ion pairing. Cancer Chemother Pharmacol. 2004;54:441–448.
  • Sharma A, Tandon A, Tovey JC, et al. Polyethylenimine-conjugated gold nanoparticles: Gene transfer potential and low toxicity in the cornea. Nanomed Nanotechnol Biol Med. 2011;7:505–513.
  • Seoudi R, Said DA. Studies on the effect of the capping materials on the spherical gold nanoparticles catalytic activity. WJNSE. 2011;1:51.
  • Sood A, Panchagnula R. Drug release evaluation of diltiazem CR preparations. Int J Pharm. 1998;175:95–107.
  • Carbinatto FM, de Castro AD, Evangelista RC, et al. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. Asian J Pharm Sci. 2014;9:27–34.
  • Higuchi T. Mechanism of sustained-action medication. theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–1149.
  • Baker RW, Lonsdale H. Controlled release: mechanisms and rates. Controlled release of biologically active agents: Springer; 1974. p. 15–71.
  • Chawla V, Tiwary AK, Gupta S. Characterization of polyvinylalcohol microspheres of diclofenac sodium: application of statistical design. Drug Dev Ind Pharm. 2000;26:675–680.
  • Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42.
  • Naguib YW, Kumar A, Cui Z. The effect of microneedles on the skin permeability and antitumor activity of topical 5-fluorouracil. Acta Pharm Sin B. 2014;4:94–99.
  • Sloan KB, Beall HD, Weimar WR, et al. The effect of receptor phase composition on the permeability of hairless mouse skin in diffusion cell experiments. Int J Pharm. 1991;73:97–104.
  • Shojaei AH, Berner B, Li X. Transbuccal delivery of acyclovir: I. In vitro determination of routes of buccal transport. Pharm Res. 1998;15:1182–1188.
  • Deraedt C, Salmon L, Gatard S, et al. Sodium borohydride stabilizes very active gold nanoparticle catalysts. Chem Commun (Camb). 2014;50:14194–14196.
  • Gao J, Huang X, Liu H, et al. Colloidal stability of gold nanoparticles modified with thiol compounds: Bioconjugation and application in cancer cell imaging. Langmuir 2012;28:4464–4471.
  • Kronberg B, Holmberg K, Lindman B. Surface chemistry of surfactants and polymers. Hoboken, NJ, USA: John Wiley & Sons; 2014.
  • Marple B, Roland P, Benninger M. Safety review of benzalkonium chloride used as a preservative in intranasal solutions: an overview of conflicting data and opinions. Otolaryngol Head Neck Surg. 2004;130:131–141.
  • Lee Y, Lee SH, Kim JS, et al. Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery. J Control Release. 2011;155:3–10.
  • Zhou B, Yang J, Peng C, et al. PEGylated polyethylenimine-entrapped gold nanoparticles modified with folic acid for targeted tumor CT imaging. Colloids Surf B Biointerfaces. 2016;140:489–496.
  • Zhou B, Shen M, Bányai I, et al. Structural characterization of PEGylated polyethylenimine-entrapped gold nanoparticles: an NMR study. Analyst. 2016;141:5390–5397.
  • Nikoobakht B, El-Sayed MA. Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir. 2001;17:6368–6374.
  • Prabha G, Raj V. Formation and characterization of β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated Fe3O4 nanoparticles for loading and releasing 5-Fluorouracil drug. Biomed Pharmacother. 2016;80:173–182.
  • Kondo M, Araie M. Iontophoresis of 5-fluorouracil into the conjunctiva and sclera. Invest Ophthalmol Vis Sci. 1989;30:583–585.
  • Kim D, Jeong YY, Jon S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano. 2010;4:3689–3696.
  • Satnamia ML, Chandrakera K, Vaishanava SK, et al. Interaction of thiolated amino acids and peptide onto the gold nanoparticle surface: radical scavenging activity. Indian J Chem. 2015;54:1206–1214.
  • Newton DW, Kluza RB. pKa values of medicinal compounds in pharmacy practice. Ann Pharmacother. 1978;12:546–554.
  • Simeonova M, Velichkova R, Ivanova G, et al. Poly(butylcyanoacrylate) nanoparticles for topical delivery of 5-fluorouracil. Int J Pharm. 2003;263:133–140.
  • Clamme JP, Azoulay J, Mély Y. Monitoring of the formation and dissociation of polyethylenimine/DNA complexes by two photon fluorescence correlation spectroscopy. Biophys J. 2003;84:1960–1968.
  • von Harpe A, Petersen H, Li Y, et al. Characterization of commercially available and synthesized polyethylenimines for gene delivery. J Control Release. 2000;69:309–322.
  • Choosakoonkriang S, Lobo BA, Koe GS, et al. Biophysical characterization of PEI/DNA complexes. J Pharm Sci. 2003;92:1710–1722.
  • Devrim B, Bozkır A. Design and evaluation of hydrophobic ion-pairing complexation of lysozyme with sodium dodecyl sulfate for improved encapsulation of hydrophilic peptides/proteins by lipid-polymer hybrid nanoparticles. J Nanomed Nanotechnol. 2015;6:1000259. doi: 10.4172/2157-7439.1000259
  • Jain P, Chakma B, Singh NK, et al. Aromatic surfactant as aggregating agent for aptamer-gold nanoparticle-based detection of plasmodium lactate dehydrogenase. Mol Biotechnol. 2016;58:497–508.
  • Singh R, Lillard JW Jr, Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86:215–223.
  • Labala S, Mandapalli PK, Kurumaddali A, et al. Layer-by-layer polymer coated gold nanoparticles for topical delivery of imatinib mesylate to treat melanoma. Mol Pharm. 2015;12:878–888.
  • Choi SH, Park TG. Hydrophobic ion pair formation between leuprolide and sodium oleate for sustained release from biodegradable polymeric microspheres. Int J Pharm. 2000;203:193–202.
  • Craig GE, Brown SD, Lamprou DA, et al. Cisplatin-tethered gold nanoparticles that exhibit enhanced reproducibility, drug loading, and stability: a step closer to pharmaceutical approval?. Inorg Chem. 2012;51:3490–3497.
  • Bhattacharjee S. DLS and zeta potential – What they are and what they are not? J Control Release. 2016;235:337–351.
  • Chen Y, Zhou L, Yuan L, et al. Formulation, characterization, and evaluation of in vitro skin permeation and in vivo pharmacodynamics of surface-charged tripterine-loaded nanostructured lipid carriers. Int J Nanomed. 2012;7:3023–3033.
  • Mohanty C, Acharya S, Mohanty AK, et al. Curcumin-encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy. Nanomedicine. 2010;5:433–449.
  • Balasubramanian SK, Yang L, Yung LYL, et al. Characterization, purification, and stability of gold nanoparticles. Biomaterials. 2010;31:9023–9030.
  • Gerweck LE, Vijayappa S, Kozin S. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther. 2006;5:1275–1279.
  • England CG, Miller MC, Kuttan A, et al. Release kinetics of paclitaxel and cisplatin from two and three layered gold nanoparticles. Eur J Pharm Biopharm. 2015;92:120–129.
  • Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–133.
  • Forslin B. A domain mosaic model of the skin barrier. Acta Derm Venereol. 1994;74:1–6.
  • Naik A, Kalia YN, Guy RH. Transdermal drug delivery: overcoming the skin's barrier function. Pharm Sci Technol Today. 2000;3:318–326.
  • Nam SH, Xu YJ, Nam H, et al. Ion pairs of risedronate for transdermal delivery and enhanced permeation rate on hairless mouse skin. Int J Pharm. 2011;419:114–120.
  • Neubert R. Ion pair transport across membranes. Pharm Res. 1989;6:743–747.
  • Chinembiri TN, Gerber M, du Plessis L, et al. Topical delivery of 5-fluorouracil from Pheroid™ formulations and the in vitro efficacy against human melanoma. AAPS PharmSciTech. 2015;16:1390–1399.
  • Dun J, Chen X, Gao H, et al. Resveratrol synergistically augments anti-tumor effect of 5-FU in vitro and in vivo by increasing S-phase arrest and tumor apoptosis. Exp Biol Med. 2015;240:1672–1681.
  • Schneider M, Stracke F, Hansen S, et al. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol. 2009;1:197–206.
  • Gupta R, Rai B. Penetration of gold nanoparticles through human skin: Unraveling its mechanisms at the molecular scale. J Phys Chem B. 2016;120:7133–7142.
  • Fratoddi I, Venditti I, Cametti C, et al. How toxic are gold nanoparticles? The state-of-the-art. Nano Res. 2015;8:1771–1799.
  • Soenen SJ, Rivera-Gil P, Montenegro JM, et al. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today. 2011;6:446–465.
  • Feliu N, Docter D, Heine M, et al. In vivo degeneration and the fate of inorganic nanoparticles. Chem Soc Rev. 2016;45:2440–2457.
  • Choi HS, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25:1165–1170.
  • Huang XL, Zhang B, Ren L, et al. In vivo toxic studies and biodistribution of near infrared sensitive Au-Au(2)S nanoparticles as potential drug delivery carriers. J Mater Sci: Mater Med. 2008;19:2581–2588.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.