148
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Biodegradable nanoparticles for improved kidney bioavailability of rhein: preparation, characterization, plasma, and kidney pharmacokinetics

, , , , , & show all
Pages 1885-1891 | Received 15 Oct 2016, Accepted 03 Jul 2017, Published online: 26 Jul 2017

References

  • Lu K, Zhang C, Wu W, et al. Rhubarb extract has a protective role against radiation-induced brain injury and neuronal cell apoptosis. Mol Med Rep. 2015;12:2689–2694.
  • Goto H, Shimada Y, Tanikawa K, et al. Clinical evaluation of the effect of daio (rhei rhizoma) on the progression of diabetic nephropathy with overt proteinuria. Am J Chin Med. 2003;31:267–275.
  • Lim AK. Diabetic nephropathy – complications and treatment. Int J Nephrol Renovasc Dis. 2014;7:361–381.
  • Zeng CC, Liu X, Chen GR, et al. The molecular mechanism of rhein in diabetic nephropathy. Evid Based Complement Alternat Med. 2014;2014:487097.
  • Gao Y, Chen X, Fang L, et al. Rhein exerts pro- and anti-inflammatory actions by targeting IKK beta inhibition in LPS-activated macrophages. Free Radic Biol Med. 2014;72:104–112.
  • Zhao F, Liang H, Cheng H, et al. Synthesis, characterization and antioxidative activity of metal complexes with rhein. Acta Chim Sin. 2011;69:925–930.
  • Chen YY, Chiang SY, Lin JG, et al. Emodin, aloe-emodin and rhein inhibit migration and invasion in human tongue cancer SCC-4 cells through the inhibition of gene expression of matrix metalloproteinase-9. Int J Oncol. 2010;36:1113–1120.
  • Wang J, Zhao H, Kong W, et al. Microcalorimetric assay on the antimicrobial property of five hydroxyanthraquinone derivatives in rhubarb (Rheum palmatum L.) to Bifidobacterium adolescentis. Phytomedicine. 2010;17:684–689.
  • Zargar BA, Masoodi MH, Ahmed B, et al. Phytoconstituents and therapeutic uses of Rheum emodi wall. ex Meissn. Food Chem. 2011;128:585–589.
  • Yuan Z, Gu X. Preparation, characterization, and in vivo study of rhein-loaded poly(lactic-co-glycolic acid) nanoparticles for oral delivery. Drug Des Devel Ther. 2015;9:2301–2309.
  • Rabanel JM, Aoun V, Elkin I, et al. Drug-loaded nanocarriers: passive targeting and crossing of biological barriers. Curr Med Chem. 2012;19:3070–3102.
  • Moghimi SM, Andersen AJ, Hashemi SH, et al. Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: the challenges ahead. J Control Release. 2010;146:175–181.
  • Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7:653–664.
  • Tammam SN, Azzazy HM, Lamprecht A. Biodegradable particulate carrier formulation and tuning for targeted drug delivery. J Biomed Nanotechnol. 2015;11:555–577.
  • Mallick A, More P, Ghosh S, et al. Dual drug conjugated nanoparticle for simultaneous targeting of mitochondria and nucleus in cancer cells. ACS Appl Mater Interfaces. 2015;7:7584–7598.
  • Kamaly N, He JC, Ausiello DA, et al. Nanomedicines for renal disease: current status and future applications. Nat Rev Nephrol. 2016;12:738–753.
  • Williams RM, Jaimes EA, Heller DA. Nanomedicines for kidney diseases. Kidney Int. 2016;90:740–745.
  • Zuckerman JE, Davis ME. Targeting therapeutics to the glomerulus with nanoparticles. Adv Chronic Kidney Dis. 2013;20:500–507.
  • Choi CHJ, Zuckerman JE, Webster P, et al. Targeting kidney mesangium by nanoparticles of defined size. Proc Natl Acad Sci USA. 2011;108:6656–6661.
  • Ruggiero A, Villa CH, Bander E, et al. Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci USA. 2010;107:12369–12374.
  • Sancey L, Kotb S, Trulllet C, et al. Long-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection. ACS Nano. 2015;9:2477–2488.
  • Nair AV, Keliher EJ, Core AB, et al. Characterizing the interactions of organic nanoparticles with renal epithelial cells in vivo. ACS Nano. 2015;9:3641–3653.
  • Gao S, Hein S, Dagnaes-Hansen F, et al. Megalin-mediated specific uptake of chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing. Theranostics. 2014;4:1039–1051.
  • Williams RM, Shah J, Ng BD, et al. Mesoscale nanoparticles selectively target the renal proximal tubule epithelium. Nano Lett. 2015;15:2358–2364.
  • Feng SS. New-concept chemotherapy by nanoparticles of biodegradable polymers: where are we now? Nanomedicine. 2006;1:297–309.
  • Nicolas J, Mura S, Brambilla D, et al. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev. 2013;42:1147–1235.
  • Bundgaard C, Jorgensen M, Mork A. An integrated microdialysis rat model for multiple pharmacokinetic/pharmacodynamic investigations of serotonergic agents. J Pharmacol Toxicol Methods. 2007;55:214–223.
  • Elmquist WF, Sawchuk RJ. Application of microdialysis in pharmacokinetic studies. Pharm Res. 1997;14:267–288.
  • Hinzman JM, Gibson JL, Tackla RD, et al. Real-time monitoring of extracellular adenosine using enzyme-linked microelectrode arrays. Biosens Bioelectron. 2015;74:512–517.
  • Neumann ID, Maloumby R, Beiderbeck DI, et al. Increased brain and plasma oxytocin after nasal and peripheral administration in rats and mice. Psychoneuroendocrinology. 2013;38:1985–1993.
  • Araujo B, Silva C, Haas S, et al. Microdialysis as a tool to determine free kidney levels of voriconazole in rodents: a model to study the technique feasibility for a moderately lipophilic drug. J Pharm Biomed Anal. 2008;47:876–881.
  • Azeredo FJ, de Araujo BV, Haas SE, et al. Comparison of fluconazole renal penetration levels in healthy and Candida albicans-infected Wistar rats. Antimicrob Agents Chemother. 2012;56:5852–5857.
  • de Araujo BV, da Silva CF, Haas SE, et al. Free renal levels of voriconazole determined by microdialysis in healthy and Candida sp.-infected Wistar rats. Int J Antimicrob Agents. 2009;33:154–159.
  • Wei Y, Guan J, Ma X, et al. Effect of glycyrrhizic acid on rhein renal penetration: a microdialysis study in rats. Xenobiotica. 2015;45:1116–1121.
  • Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36:887–913.
  • Kirbs C, Kloft C. In vitro microdialysis recovery and delivery investigation of cytokines as prerequisite for potential biomarker profiling. Eur J Pharm Sci. 2014;57:48–59.
  • Guidance for industry: bioanalytical method validation. Food and Drug Administration. 2013. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInforma-tion/Guidances/UCM368107.pdf
  • Fonouni H, Esmaeilzadeh M, Jarahian P, et al. Early detection of metabolic changes using microdialysis during and after experimental kidney transplantation in a porcine model. Surg Innov. 2011;18:321–328.
  • Kumari A, Yadav SK, Pakade YB, et al. Nanoencapsulation and characterization of Albizia chinensis isolated antioxidant quercitrin on PLA nanoparticles. Colloids Surf B Biointerfaces. 2011;82:224–232.
  • Kumari A, Yadav SK, Pakade YB, et al. Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B Biointerfaces. 2010;80:184–192.
  • Schadlich A, Caysa H, Mueller T, et al. Tumor accumulation of NIR fluorescent PEG–PLA nanoparticles: impact of particle size and human xenograft tumor model. ACS Nano. 2011;5:8710–8720.
  • El-Mohdy HA, Ghanem S. Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by γ-irradiation. J Polym Res. 2009;16:1–10.
  • Cheng KK, Yeung CF, Ho SW, et al. Highly stabilized curcumin nanoparticles tested in an in vitro blood–brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J. 2012;15:324–336.
  • Kumari A, Yadav SK. Cellular interactions of therapeutically delivered nanoparticles. Expert Opin Drug Deliv. 2011;8:141–151.
  • Xiao RZ, Zeng ZW, Zhou GL, et al. Recent advances in PEG–PLA block copolymer nanoparticles. Int J Nanomedicine. 2010;5:1057–1065.
  • Kumari A, Kumar V, Yadav SK. Plant extract synthesized PLA nanoparticles for controlled and sustained release of quercetin: a green approach. PLoS One. 2012;7:e41230.
  • Kosik-Bogacka D, Mlodzik-Danielewicz N, Banach B, et al. Effect of amiloride and bumetanide on transepithelial ion transport in isolated rabbit cecal and colonic wall. Postȩpy Hig Med Dosw. 2005;59:229–235.
  • Cibicek N, Zivna H, Zadak Z, et al. Colon submucosal microdialysis: a novel in vivo approach in barrier function assessment – a pilot study in rats. Physiol Res. 2007;56:611–617.
  • de Araújo BV, Laureano JV, Grünspan LD, et al. Validation of an efficient LC-microdialysis method for gemifloxacin quantitation in lung, kidney and liver of rats. J Chromatogr B. 2013;919–920:62–66.
  • Liu DD, Xu S, Xiao H, et al. Quantitative determination of unbound levofloxacin by simultaneous microdialysis in rat pancreas after intravenous and oral doses. J Pharm Pharmacol. 2014;66:1215–1221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.