298
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Nanoparticles obtained by confined impinging jet mixer: poly(lactide-co-glycolide) vs. Poly-ε-caprolactone

, ORCID Icon, , & ORCID Icon
Pages 934-941 | Received 04 Aug 2017, Accepted 20 Dec 2017, Published online: 09 Jan 2018

References

  • Sinha VR, Bansal K, Kaushik R, et al. Poly-ɛ-caprolactone microspheres and nanospheres: an overview. Int J Pharm. 2004;278:1–23.
  • Cho K, Wang X, Nie S, et al. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14: 1310–1316.
  • Shaji J, Lal M. Nanocarriers for targeting in inflammation. Asian J Pharm Clin Res. 2013;6:3–12.
  • Singh Y, Ojha P, Srivastava M, et al. Reinvestigating nanoprecipitation via Box–Behnken design: a systematic approach. J Microencapsul. 2015;32:75–85.
  • Le Roy Boehm A-L, Zerrouk R, Fessi H. Poly-ε-caprolactone nanoparticles containing a poorly soluble pesticide: formulation and stability study. J Microencapsul. 2000;17: 195–205.
  • Di Pasquale N, Marchisio DL, Carbone P, et al. Identification of nucleation rate parameters with MD and validation of the CFD model for polymer particle precipitation. Chem Eng Res Des. 2013;91:2275–2290.
  • Di Pasquale N, Marchisio DL, Barresi AA, et al. Solvent structuring and its effect on the polymer structure and processability: the case of water − acetone poly-ε-caprolactone mixtures. J Phys Chem B. 2014;118:13258–13267.
  • Lavino AD, Di Pasquale N, Carbone P, et al. A novel multiscale model for the simulation of polymer flash nano-precipitation. Chem Eng Sci. 2017;171:485–494.
  • Govender T, Stolnik S, Garnett MC, et al. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release. 1999;57:171–185.
  • Bilati U, Allémann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci. 2005; 24:67–75.
  • Chow SF, Sun CC, Chow AHL. Assessment of the relative performance of a confined impinging jets mixer and a multi-inlet vortex mixer for curcumin nanoparticle production. Eur J Pharm Biopharm. 2014;88:462–471.
  • Ferri A, Kumari N, Peila R, et al. Production of menthol-loaded polymeric nanoparticles by solvent displacement. Can J Chem Eng. 2017;95:1690–1706.
  • Sonam R, Chaudhary H, Kumar V. Taguchi design optimization and development of antibacterial drug-loaded PLGA nanoparticles. Int J Biol Macromol. 2014;64:99–105.
  • Johnson BK, Prud-homme RK. Flash nanoprecipitation of organic actives and block copolymers using a confined impinging jets mixer. Aust J Chem. 2003;56:1021–1024.
  • Johnson BK, Prud-homme RK. Mechanism for rapid self-assembly of block copolymer nanoparticles. Phys Rev Lett. 2003;91:118302–1183024.
  • Johnson BK, Prud-homme RK. Chemical processing and micromixing in confined impinging jets. AIChE J. 2003;49: 2264–2282.
  • Lince F, Marchisio DL, Barresi AA. Strategies to control the particle size distribution of poly-ε-caprolactone nanoparticles for pharmaceutical applications. J Colloid Interf Sci. 2008;322:505–515.
  • Lince F, Marchisio DL, Barresi AA. Smart mixers and reactors for the production of pharmaceutical nanoparticles: proof of concept. Chem Eng Res Des. 2009;87:543–549.
  • Marchisio DL. Large eddy simulation of mixing and reaction in a confined impinging jets reactor. Comp Chem Eng. 2009;33:408–420.
  • Icardi M, Gavi E, Marchisio DL, et al. Investigation of the flow field in a three-dimensional confined impinging jets reactor by means of microPIV and DNS. Chem Eng J. 2011;166:294–305.
  • Lince F, Marchisio DL, Barresi AA. A comparative study for nanoparticle production with passive mixers via solvent-displacement: use of CFD models for optimization and design. Chem Eng Process. 2011;50:356–368.
  • Valente I, Celasco E, Marchisio DL, et al. Nanoprecipitation in confined impinging jet mixers: Production, characterization and scale-up of pegylated nanospheres and nanocapsules for pharmaceutical use. Chem Eng Sci. 2012;77: 217–227.
  • Lince F, Bolognesi S, Marchisio DL, et al. Preparation of poly(MePEGCA-co-HDCA) nanoparticles with confined impinging jets reactor: experimental and modeling study. J Pharm Sci. 2011;100:2391–2405.
  • Han J, Zhu Z, Qian H, et al. A simple confined impingement jets mixer for flash nanoprecipitation. J Pharm Sci. 2012; 101:4018–4023.
  • Zelenková T, Fissore D, Marchisio DL, et al. Size control in production and freeze-drying of poly-ε-caprolactone nanoparticles. J Pharm Sci. 2014;103:1839–1850.
  • Barresi AA, Vanni M, Fissore D, et al. Synthesis and preservation of polymer nanoparticles for pharmaceutical applications. In: Thakur VK, Thakur MK, editors. Handbook of Polymers for Pharmaceutical Technologies: processing and Applications. Volume 2. Hoboken (NJ): John Wiley & Sons Inc; 2015. p. 229–280.
  • Winzenburg G, Schmidt C, Fuchs S, et al. Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Adv Drug Deliv Rev. 2004;56: 1453–1466.
  • Eliaz RE, Kost J. Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins. J Biomed Mater Res. 2000;50:388–396.
  • Tang ZG, Rhodes NP, Hunt JA. Control of the domain microstructures of PLGA and PCL binary systems: importance of morphology in controlled drug release. Chem Eng Res Des. 2007;85:1044–1050.
  • United States Pharmacopoeia. Florfenicol. United States Pharmacopeial Convention, Rockville, MD. 2007.
  • Song M, Li Y, Ning A, et al. Silica nanoparticles as a carrier in the controlled release of florfenicol. J Drug Deliv Sci Tec. 2010;20:349–352.
  • Kou X, Li Q, Lei J, et al. Preparation of molecularly imprinted nanospheres by premix membrane emulsification technique. J Membrane Sci. 2012;417–418:87–95.
  • Pinto RA, Torres PM, Luengo JE, et al. Development and characterization of PLGA nanoparticles loaded with florfenicol. Lat Am J Pharm. 2014;33:1139–1143.
  • Wang T, Chen X, Lu M, et al. Preparation, characterisation and antibacterial activity of a florfenicol-loaded solid lipid nanoparticle suspension. IET Nanobiotechnol. 2015;9:355–361.
  • Di Pasquale N, Marchisio DL, Barresi AA. Model validation for precipitation in solvent-displacement processes. Chem Eng Sci. 2012;84:671–683.
  • Maia JL, Santana MHA, Ré MI. The effect of some processing conditions on the characteristics of biodegradable microspheres obtained by an emulsion solvent evaporation process. Braz J Chem Eng. 2004;21:1–12.
  • Ye M, Kim S, Park K. Issues in long-term protein delivery using biodegradable microparticles. J Control Release. 2010; 146:241–260.
  • Turino LN, Mariano RN, Boimvaser S, et al. In situ-formed microparticles of PLGA from O/W emulsions stabilized with PVA: encapsulation and controlled release of progesterone. J Pharm Innov. 2014;9:132–140.
  • Aubry J, Ganachaud F, Addad JPC, et al. Nanoprecipitation of polymethylmethacrylate by solvent shifting: 1. Boundaries. Langmuir. 2009;25:1970–1979.
  • Thakur VK, Kumari M. Handbook of Polymers for Pharmaceutical Technologies, Structure and Chemistry. Hoboken (NJ): John Wiley & Sons Inc.; 2015.
  • Alshamsan A. Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles. Saudi Pharm J. 2014; 22:219–222.
  • Xie H, Smith JW. Fabrication of PLGA nanoparticles with a fluidic nanoprecipitation system. J Nanobiotechnology. 2010;8:18.
  • Misra R, Acharya S, Dilnawaz F, et al. Sustained antibacterial activity of doxycycline-loaded poly(d,l-lactide-co-glycolide) and poly(ε-caprolactone) nanoparticles. Nanomedicine-UK. 2009;4:519–530.
  • Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–177.
  • Müller RH. Zetapotential und Partikelladung in der Laborpraxis. Einführung in die Theorie, Praktische Meβdurchführung, Dateninterpretation [Zeta potential and particle loading in laboratory practice. Introduction to theory, practical measurement execution, data interpretation]. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 1996.
  • Corrigan OI, Li X. Quantifying drug release from PLGA nanoparticulates. Eur J Pharm Sci. 2009;37:477–485.
  • Lince F, Bolognesi S, Stella B, et al. Preparation of polymer nanoparticles loaded with doxorubicin for controlled drug delivery. Chem Eng Res Des. 2011;89:2410–2419.
  • Zili Z, Sfar S, Fessi H. Preparation and characterization of poly-epsilon-caprolactone nanoparticles containing griseofulvin. Int J Pharm. 2005;294:261–267.
  • Barichello JM, Morishita M, Takayama K, et al. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm. 1999;25:471–476.
  • Zakeri-Milani P, Badir Delf Loveymi BD, Jelvehgari M, et al. The characteristics and improved intestinal permeability of vancomycin PLGA-nanoparticles as colloidal drug delivery system. Colloid Surface B. 2013;103:174–181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.