213
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Dual effect biodegradable ciprofloxacin loaded implantable matrices for osteomyelitis: controlled release and osteointegration

, ORCID Icon, &
Pages 1023-1033 | Received 13 Sep 2017, Accepted 15 Jan 2018, Published online: 14 Mar 2018

References

  • Nayak AK, Bhattacharya A, Sen KK. Hydroxyapatite-antibiotic implantable minipellets for bacterial bone infections using precipitation technique: preparation, characterization and in-vitro antibiotic release studies. J Pharm Res. 2010;3:53–59.
  • Pawar A, Derle D. Development of cost effective biodegradable implants of ciprofloxacin hydrochloride in treatment of osteomyelitis. Asian J Pharm. 2013;7:92–102.
  • Nayak AK, Hasnain MS, Malakar J. Development and optimization of hydroxyapatite-ofloxacin implants for possible bone delivery in osteomyelitis treatment. Curr Drug Deliv. 2013;10:241–250.
  • Mehboob H, Chang S-H. Evaluation of healing performance of biodegradable composite bone plates for a simulated fractured tibia model by finite element analysis. Compos Struct. 2014;111:193–204.
  • Liao X, Lu S, Zhuo Y, et al. Bone physiology, biomaterial and the effect of mechanical/physical microenvironment on MSC osteogenesis: a tribute to Shu Chien's 80th birthday. Cel Mol Bioeng. 2011;4:579–590.
  • Liu YS, Huang QL, Kienzle A, et al. In vitro degradation of porous PLLA/pearl powder composite scaffolds. Mater Sci Eng C. 2014;38:227–234.
  • Trent AM, Plumb D. Treatment of infectious arthritis and osteomyelitis. Vet Clin North Am Food Anim Pract. 1991;7:747–778.
  • Santoro M, Shah SR, Walker JL, et al. Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev. 2016;107:206–212.
  • Butt MS, Bai J, Wan X, et al. Mechanical and degradation properties of biodegradable Mg strengthened poly-lactic acid composite through plastic injection molding. Mater Sci Eng C. 2017;70:141–147.
  • Peng X-F, Mi H-Y, Jing X, et al. Preparation of highly porous interconnected poly(lactic acid) scaffolds based on a novel dynamic elongational flow procedure. Mater Des. 2016;101:285–293.
  • Argarate N, Olalde B, Atorrasagasti G, et al. Biodegradable Bi-layered coating on polymeric orthopaedic implants for controlled release of drugs. Mater Lett. 2014;132:193–195.
  • Patil AT, Khobragade DS, Chafle SA, et al. Development and evaluation of a hot-melt coating technique for enteric coating. Braz J Pharm Sci. 2012;48:69–77.
  • Motealleh A, Eqtesadi S, Perera FH, et al. Understanding the role of dip-coating process parameters in the mechanical performance of polymer-coated bioglass robocast scaffolds. J Mech Behav Biomed Mater. 2016;64:253–261.
  • Castro C, Evora C, Baro M, et al. Two-month ciprofloxacin implants for multibacterial bone infections. Eur J Pharm Biopharm. 2005;60:401–406.
  • Aimé VL, Kidwell JT, Webb LH. Single-stage treatment of osteomyelitis for digital salvage by using an antibiotic-eluting, methylmethacrylate joint-spanning spacer. J Hand Surg. 2017;42:480.e1–480.e7.
  • Li Y, Liu L, Wan P, et al. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations. Biomaterials. 2016;106:250–263.
  • Chang N-J, Lin C-C, Shie M-Y, et al. Positive effects of cell-free porous PLGA implants and early loading exercise on hyaline cartilage regeneration in rabbits. Acta Biomater. 2015;28:128–137.
  • Ghosh S, Viana JC, Reis RL, et al. Development of porous lamellar poly(l-lactic acid) scaffolds by conventional injection molding process. Acta Biomater. 2008;4:887–896.
  • Hanafy AF, El-Egaky AM, Mortada SA, et al. Development of implants for sustained release of 5-fluorouracil using low molecular weight biodegradable polymers. Drug Discov Ther. 2009;3:287–295.
  • Bai H, Huang C, Xiu H, et al. Toughening of poly(l-lactide) with poly(ε-caprolactone): combined effects of matrix crystallization and impact modifier particle size. Polymer. 2013;54:5257–5266.
  • Vital A, Vayer M, Tillocher T, et al. Morphology control in thin films of PS:PLA homopolymer blends by dip-coating deposition. Appl Surf Sci. 2017;393:127–133.
  • Benoit M-A, Mousset B, Delloye C, et al. Antibiotic-loaded plaster of Paris implants coated with poly lactide-co-glycolide as a controlled release delivery system for the treatment of bone infections. Int Orthop. 1998;21:403–408.
  • Mabrouk M, Mostafa AA, Oudadesse H, et al. Effect of ciprofloxacin incorporation in PVA and PVA bioactive glass composite scaffolds. Ceram Int. 2014;40:4833–4845.
  • Castro C, Sánchez E, Delgado A, et al. Ciprofloxacin implants for bone infection. In vitro-in vivo characterization. J Control Release. 2003;93:341–354.
  • Jamshidian M, Tehrany EA, Imran M, et al. Poly-lactic acid: production, applications, nanocomposites, and release studies. Compreh Rev Food Sci Food Saf. 2010;9:552–571.
  • de Oliveira AR, Molina EF, de Castro Mesquita P, et al. Structural and thermal properties of spray-dried methotrexate-loaded biodegradable microparticles. J Therm Anal Calorim. 2013;112:555–565.
  • Run M-T, Li X, Yao C-G. Thermal degradation behavior and kinetic analysis of poly(L-lactide) in nitrogen and air atmosphere. Front Mater Sci China. 2010;4:78–83.
  • Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004;351:1645–1654.
  • Park HK, Dujovny M, Diaz FG, et al. Biomechanical properties of high-density polyethylene for pterional prosthesis. Neurol Res. 2002;24:671–676.
  • Kundu B, Sinha MK, Mitra MK, et al. Fabrication and characterization of porous hydroxyapatite ocular implant followed by an in vivo study in dogs. Bull Mater Sci. 2004;27:133–140.
  • Kaffashi B, Davoodi S, Oliaei E. Poly(epsilon-caprolactone)/triclosan loaded polylactic acid nanoparticles composite: a long-term antibacterial bionanocomposite with sustained release. Int J Pharm. 2016;508:10–21.
  • Zhao Y, Liu B, You C, et al. Effects of MgO whiskers on mechanical properties and crystallization behavior of PLLA/MgO composites. Mater Des. 2016;89:573–581.
  • Gleadall A, Pan J, Atkinson H. A simplified theory of crystallisation induced by polymer chain scissions for biodegradable polyesters. Polym Degrad Stabil. 2012;97:1616–1620.
  • Zhou D, Shao J, Li G, et al. Crystallization behavior of PEG/PLLA block copolymers: effect of the different architectures and molecular weights. Polymer. 2015;62:70–76.
  • Rønold HJ, Ellingsen JE. The use of a coin shaped implant for direct in situ measurement of attachment strength for osseointegrating biomaterial surfaces. Biomaterials. 2002;23:2201–2209.
  • Nemoto Y, Higuchi K, Baba O, et al. Multinucleate osteoclasts in medaka as evidence of active bone remodeling. Bone. 2007;40:399–408.
  • Gursel I, Korkusuz F, Turesin F, et al. In vivo application of biodegradable controlled antibiotic release systems for the treatment of implant-related osteomyelitis. Biomaterials. 2001;22:73–80.
  • Sá JC, de Brito RA, Moura CE, et al. Influence of argon-ion bombardment of titanium surfaces on the cell behavior. Surf Coat Technol. 2009;203:1765–1770.
  • Murphy CM, Haugh MG, O'Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31:461–466.
  • Lin Xiao BW. Guang Yang and Mario Gauthier poly(lactic acid)-based biomaterials: synthesis, modification and applications. In: Ghista PDN, editor. Biomedical science, engineering and technology. Croatia: InTech Open; 2012. p. 247–282.
  • Rothen-Weinhold A, Besseghir K, Vuaridel E, et al. Injection-molding versus extrusion as manufacturing technique for the preparation of biodegradable implants. Eur J Pharm Biopharm. 1999;48:113–121.
  • Dillen K, Vandervoort J, Van den Mooter G, et al. Factorial design, physicochemical characterisation and activity of ciprofloxacin-PLGA nanoparticles. Int J Pharm. 2004;275:171–187.
  • Cucos A, Budrugeac P, Mitrea S, et al. The influence of sodium chloride on the melting temperature of collagen crystalline region in parchments. J Therm Anal Calorim. 2013;111:467–473.
  • Labarre D, Ponchel G, Vauthier C. Specific properties of polymers in the presence of liquid media. In: Biomedical and pharmaceutical polymers. London: Pharmaceutical Press; 2011. p. 35–43.
  • Martín-Alfonso JE, Félix M, Romero A, et al. Development of new albumen based biocomposites formulations by injection moulding using chitosan as physicochemical modifier additive. Compos B Eng. 2014;61:275–281.
  • Lyu S, Untereker D. Degradability of polymers for implantable biomedical devices. Int J Mol Sci. 2009;10:4033–4065.
  • Mohanty S, Larsen LB, Trifol J, et al. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Mater Sci Eng C. 2015;55:569–578.
  • Lyndon JA, Boyd BJ, Birbilis N. Metallic implant drug/device combinations for controlled drug release in orthopaedic applications. J Control Release. 2014;179:63–75.
  • Lao LL, Peppas NA, Boey FYC, et al. Modeling of drug release from bulk-degrading polymers. Int J Pharm. 2011;418:28–41.
  • Chung T-W, Huang Y-Y, Liu Y-Z. Effects of the rate of solvent evaporation on the characteristics of drug loaded PLLA and PDLLA microspheres. Int J Pharm. 2001;212:161–169.
  • Burkersroda F, Schedl L, Göpferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials. 2002;23:4221–4231.
  • Rodenas-Rochina J, Vidaurre A, Castilla Cortázar I, et al. Effects of hydroxyapatite filler on long-term hydrolytic degradation of PLLA/PCL porous scaffolds. Polym Degrad Stabil. 2015;119:121–131.
  • Tucker JJ, Gordon JA, Zanes RC, et al. P2 porous titanium implants improve tendon healing in an acute rat supraspinatus repair model. J Shoulder Elbow Surg. 2017;26:529–535.
  • Wang L, Hu X, Ma X, et al. Promotion of osteointegration under diabetic conditions by tantalum coating-based surface modification on 3-dimensional printed porous titanium implants. Colloids Surf B Biointerfaces. 2016;148:440–452.
  • Toptan F, Alves AC, Pinto AMP, et al. Tribocorrosion behavior of bio-functionalized highly porous titanium. J Mech Behav Biomed Mater. 2017;69:144–152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.