578
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Development of paracetamol-caffeine co-crystals to improve compressional, formulation and in vivo performance

, , , , , , & show all
Pages 1099-1108 | Received 18 Oct 2017, Accepted 28 Jan 2018, Published online: 15 Feb 2018

References

  • Aakeröy CB, Salmon DJ. Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm. 2005;7:439–448.
  • Childs SL, Zaworotko MJ. The reemergence of cocrystals: the crystal clear writing is on the wall introduction to virtual special issue on pharmaceutical cocrystals. Cryst Growth Des. 2009;9:4208–4211.
  • Henck J-O, Byrn SR. Designing a molecular delivery system within a preclinical timeframe. Drug Discov Today. 2007;12:189–199.
  • Friščić T, Jones W. Benefits of cocrystallisation in pharmaceutical materials science: an update. J Pharm Pharmcol. 2010;62:1547–1559.
  • Banerjee R, Bhatt PM, Ravindra NV, et al. Saccharin salts of active pharmaceutical ingredients, their crystal structures, and increased water solubilities. Cryst Growth Des. 2005;5:2299–2309.
  • Good DJ, Rodri´guez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. Cryst Growth Des. 2009;9:2252–2264.
  • Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9:304–316.
  • Agharkar S, Lindenbaum S, Higuchi T. Enhancement of solubility of drug salts by hydrophilic counterions: properties of organic salts of an antimalarial drug. J Pharm Sci. 1976;65:747–749.
  • Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24:1–16.
  • Rajewski RA, Stella VJ. Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J Pharm Sci. 1996;85:1142–1169.
  • Humberstone AJ, Charman WN. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv Drug Deliv Rev. 1997;25:103–128.
  • Datta S, Grant DJ. Crystal structures of drugs: advances in determination, prediction and engineering. Nat Rev Drug Discov. 2004;3:42–57.
  • Blagden N, De Matas M, Gavan P, et al. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007;59:617–630.
  • Desiraju GR. Chemistry beyond the molecule. Nature. 2001;412:397–400.
  • Desiraju GR. Crystal engineering: a brief overview. J Chem Sci. 2010;122:667–675.
  • Gao Y, Gao J, Liu Z, et al. Coformer selection based on degradation pathway of drugs: a case study of adefovir dipivoxil-saccharin and adefovir dipivoxil-nicotinamide cocrystals. Int J Pharm. 2012;438:327–335.
  • Vangala VR, Chow PS, Tan RB. Characterization, physicochemical and photo-stability of a co-crystal involving an antibiotic drug, nitrofurantoin, and 4-hydroxybenzoic acid. CrystEngComm. 2011;13:759–762.
  • Liu X, Lu M, Guo Z, et al. Improving the chemical stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion. Pharm Res. 2012;29:806–817.
  • Perumalla SR, Sun CC. Improved solid-state stability of salts by cocrystallization between conjugate acid–base pairs. CrystEngComm. 2013;15:5756–5759.
  • McNamara DP, Childs SL, Giordano J, et al. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res. 2006;23:1888–1897.
  • Ullah M, Hussain I, Sun CC. The development of carbamazepine-succinic acid cocrystal tablet formulations with improved in vitro and in vivo performance. Drug Dev Ind Pharm. 2016;42:969–976.
  • Sun CC, Hou H. Improving mechanical properties of caffeine and methyl gallate crystals by cocrystallization. Cryst Growth Des. 2008;8:1575–1579.
  • Maeno Y, Fukami T, Kawahata M, et al. Novel pharmaceutical cocrystal consisting of paracetamol and trimethylglycine, a new promising cocrystal former. Int J Pharm. 2014;473:179–186.
  • Karki S, Friščić T, Fábián L, et al. Improving mechanical properties of crystalline solids by cocrystal formation: new compressible forms of paracetamol. Adv Mater. 2009;21:3905–3909.
  • Fleischman SG, Kuduva SS, McMahon JA, et al. Crystal engineering of the composition of pharmaceutical phases: multiple-component crystalline solids involving carbamazepine. Cryst Growth Des. 2003;3:909–919.
  • Arora KK, Zaworotko MJ. Pharmaceutical co-crystals: a new opportunity in pharmaceutical science for a long-known but little studied class of compounds. Polym Pharm Solids. 2009;2:281–313.
  • Vishweshwar P, Mcmahon JA, Bis JA, et al. Pharmaceutical co-crystals. J Pharm Sci. 2006;95:499–516.
  • Thakuria R, Delori A, Jones W, et al. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453:101–125.
  • Huskić I, Christopherson JC, Užarević K, et al. In situ monitoring of vapour-induced assembly of pharmaceutical cocrystals using a benchtop powder X-ray diffractometer. Chem Commun. 2016;52:5120–5123.
  • Di Martino P, Guyot-Hermann A, Conflant P, et al. A new pure paracetamol for direct compression: the orthorhombic form. Int J Pharm. 1996;128:1–8.
  • Rasenack N, Müller BW. Crystal habit and tableting behavior. Int J Pharm. 2002;244:45–57.
  • Lonare AA, Patel SR. Antisolvent crystallization of poorly water soluble drugs. Int J Chem Eng Appl. 2013;4:337–341.
  • Healy A, McCarthy L, Gallagher K, et al. Sensitivity of dissolution rate to location in the paddle dissolution apparatus. J Pharm Pharmacol. 2002;54:441–444.
  • Nicklasson M, Brodin A, Nyqvist H. Studies on the relationship between solubility and intrinsic rate of dissolution as a function of pH. Acta Pharm Suec. 1981;18:119–128.
  • Heckel R. Density–pressure relationships in powder compaction. Trans Metall Soc AIME. 1961;221:671–675.
  • Hersey J, Rees J. Deformation of particles during briquetting. Nat Phys Sci. 1971;230:96–96.
  • Fell J, Newton J. Determination of tablet strength by the diametral-compression test. J Pharm Sci. 1970;59:688–691.
  • Zhang Y, Huo M, Zhou J, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12:263–271.
  • Alswayeh R, Alvi SN, Hammami MM. Rapid determination of acetaminophen levels in humans plasma by high performance liquid chromatography. Am J PharmTech Res. 2016;6:710–719.
  • Zhang Y, Huo M, Zhou J, et al. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010;99:306–314.
  • Haisa M, Kashino S, Maeda H. The orthorhombic form of p-hydroxyacetanilide. Acta Crystallogr B Struct Crystallogr Cryst Chem. 1974;30:2510–2512.
  • Shiraki K, Takata N, Takano R, et al. Dissolution improvement and the mechanism of the improvement from cocrystallization of poorly water-soluble compounds. Pharm Res. 2008;25:2581–2592.
  • Sun CC. Cocrystallization for successful drug delivery. Expert Opin Drug Deliv. 2013;10:201–213.
  • Adetunji OA, Odeniyi MA, Itiola OA. Compression, mechanical and release properties of chloroquine phosphate tablets containing corn and trifoliate yam starches as binders. Trop J Pharm Res. 2006;5:589–596.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.