167
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, in vitro characterization, and anti-tumor effects of novel polystyrene-poly(amide-ether-ester-imide) co-polymeric micelles for delivery of docetaxel in breast cancer in Balb/C mice

ORCID Icon, , , , &
Pages 1139-1157 | Received 14 Nov 2017, Accepted 30 Jan 2018, Published online: 21 Feb 2018

References

  • DeSantis C, Ma J, Bryan L, et al. Breast cancer statistics, 2013. CA Cancer J Clin. 2014;64:52–62.
  • Sánchez-Moreno P, Boulaiz H, Ortega-Vinuesa JL, et al. Novel drug delivery system based on docetaxel-loaded nanocapsules as a therapeutic strategy against breast cancer cells. Int J Mol Sci. 2012;13:4906–4919.
  • Jeetah R, Bhaw-Luximon A, Jhurry D. Polymeric nanomicelles for sustained delivery of anti-cancer drugs. Mutat Res. 2014;768:47.
  • Cortes J, Pazdur R. Docetaxel. J Clin Oncol. 1995;13:2643–2655.
  • Chevallier B, Fumoleau P, Kerbrat P, et al. Docetaxel is a major cytotoxic drug for the treatment of advanced breast cancer: a phase II trial of the Clinical Screening Cooperative Group of the European Organization for Research and Treatment of Cancer. J Clin Oncol. 1995;13:314–322.
  • Gueritte-Voegelein F, Guenard D, Lavelle F, et al. Relationships between the structure of taxol analogues and their antimitotic activity. J Med Chem. 1991;34:992–998.
  • Qin Y, Li H, Guo X, et al. Adjuvant chemotherapy, with or without taxanes, in early or operable breast cancer: a meta-analysis. PLoS One. 2011;6:e26946.
  • Engels FK, Mathot RA, Verweij J. Alternative drug formulations of docetaxel: a review. Anti-Cancer Drugs. 2007;18:95–103.
  • Ganju A, Yallapu MM, Khan S, et al. Nanoways to overcome docetaxel resistance in prostate cancer. Drug Resist Update. 2014;17:13–23.
  • Hobbs S, Monsky W, Yuan F, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA. 1998;95:4607–4612.
  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–760.
  • Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453:198–214.
  • Wang Y, Zhao H, Peng J, et al. Targeting therapy of neuropilin-1 receptors overexpressed breast cancer by paclitaxel-loaded CK3-conjugated polymeric micelles. J Biomed Nanotechnol. 2016;12:2097–2111.
  • Xu Y, Wang C, Ding Y, et al. Nanoparticles with optimal ratiometric co-delivery of docetaxel with gambogic acid for treatment of multidrug-resistant breast cancer. J Biomed Nanotechnol. 2016;12:1774–1781.
  • Zhang H, Li R-Y, Lu X, et al. Docetaxel-loaded liposomes: preparation, pH sensitivity, pharmacokinetics, and tissue distribution. J Zhejiang Univ Sci B. 2012;13:981–989.
  • Tao W, Zeng X, Liu T, et al. Docetaxel-loaded nanoparticles based on star-shaped mannitol-core PLGA-TPGS diblock copolymer for breast cancer therapy. Acta Biomater. 2013;9:8910–8920.
  • Huang J, Tao C, Yu Y, et al. Simultaneous targeting of differentiated breast cancer cells and breast cancer stem cells by combination of docetaxel-and sulforaphane-loaded self-assembled poly (D, L-lactide-co-glycolide)/hyaluronic acid block copolymer-based nanoparticles. J Biomed Nanotechnol. 2016;12:1463–1477.
  • Mikhail A, Eetezadi S, Allen C, et al. Multicellular tumor spheroids for evaluation of cytotoxicity and tumor growth inhibitory effects of nanomedicines in vitro: a comparison of docetaxel-loaded block copolymer micelles and Taxotere®. PLoS One. 2013;8:e62630.
  • Tan L, Peng J, Zhao Q, et al. A novel MPEG-PDLLA-PLL copolymer for docetaxel delivery in breast cancer therapy. Theranostics. 2017;7:2652.
  • Li W, Peng J, Tan L, et al. Mild photothermal therapy/photodynamic therapy/chemotherapy of breast cancer by Lyp-1 modified Docetaxel/IR820 co-loaded micelles. Biomaterials. 2016;106:119–133.
  • Shimoda K, Kubota N. Chemo-enzymatic synthesis of ester-linked docetaxel-monosaccharide conjugates as water-soluble prodrugs. Molecules. 2011;16:6769–6777.
  • Wang L, Zhang M, Zhang N, et al. Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes. Int J Nanomedicine. 2011;6:e52.
  • Jones M-C, Leroux J-C. Polymeric micelles - a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999; 9/1/48:101–111.
  • Kolahdoozan M, Mirsafaei R, Mallakpour S. Synthesis and properties of new highly soluble poly (amide-ester-imide) s containing poly (ethylene glycol) as a soft segment. Polym Bull. 2012;68:1239–1254.
  • Shulkin A, Stöver HD. Polymer microcapsules by interfacial polyaddition between styrene–maleic anhydride copolymers and amines. J Memb Sci. 2002;209:421–432.
  • Larsona N, Greisha K, Bauera H, et al. Synthesis and evaluation of poly(styrene-co-maleic acid) micellar nanocarriers for the delivery of tanespimycin. Int J Pharm. 2011;420:111–117.
  • Angelova N, Yordanov G. Nanoparticles of poly (styrene-co-maleic acid) as colloidal carriers for the anticancer drug epirubicin. Colloids Surf A Physicochem Eng Asp. 2014;452:73–81.
  • Varshosaz J, Taymouri S, Hassanzadeh F, et al. Self-assembly micelles with lipid core of cholesterol for docetaxel delivery to B16F10 melanoma and HepG2 cells. J Liposome Res. 2015;25:157–165.
  • Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm. 2007;65:259–269.
  • Kim SY, Shin IG, Lee YM, et al. Methoxy poly(ethylene glycol) and epsilon-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours. J Control Release. 1998;51:13–22.
  • Tong S-W, Xiang B, Dong D-W, et al. Enhanced antitumor efficacy and decreased toxicity by self-associated docetaxel in phospholipid-based micelles. Int J Pharm. 2012;434:413–419.
  • Cui Y, Zhang M, Zeng F, et al. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl Mater Interfaces. 2016;8:32159–32169.
  • Yang ZL, X, Zhang X, Liu J, et al. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid-polymer hybrid nanoparticles. Biomed Mater. 2013;8:025012.
  • Zhang L, Tan L, Chen L, et al. A simple method to improve the stability of docetaxel micelles. Sci Rep. 2016;6:36957.
  • Tan L, Ma B, Chen L, et al. Toxicity evaluation and anti-tumor study of docetaxel loaded mpeg-polyester micelles for breast cancer therapy. J Biomed Nanotechnol. 2017;13:393–408.
  • Wang X, Li J, Wang Y, et al. HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors. ACS Nano. 2009;3:3165–3174.
  • Chibowski S, Paszkiewicz M. Influence of the molecular weight of polyethylene glycol and polyethylene oxide on the adsorption and electrochemical properties of the titania/electrolyte solution interface. Adsorpt Sci Technol. 1999;17:845–855.
  • Sezgin Z, Yüksel N, Baykara T. Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Eur J Pharm Biopharm. 2006;64:261–268.
  • Stiufiuc R, Iacovita C, Nicoara R, et al. One-step synthesis of PEGylated gold nanoparticles with tunable surface charge. J Nanomater. 2013;2013:88.
  • Gaucher G, Marchessault RH, Leroux J-C. Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J Control Release. 2010;4/2/143:2–12.
  • Iyer AK, Greish K, Fang J, et al. High-loading nanosized micelles of copoly (styrene–maleic acid)–zinc protoporphyrin for targeted delivery of a potent heme oxygenase inhibitor. Biomaterials 2007;28:1871–1881.
  • Siepmann J, Faisant N, Akiki J, et al. Effect of the size of biodegradable microparticles on drug release: experiment and theory. J Control Release. 2004;96:123–134.
  • Sun B, Ranganathan B, Feng S-S. Multifunctional poly (D, L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Biomaterials 2008;29:475–486.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.