538
Views
47
CrossRef citations to date
0
Altmetric
Research Article

Formulation, optimization, and characterization of rifampicin-loaded solid lipid nanoparticles for the treatment of tuberculosis

, &
Pages 1975-1989 | Received 11 Jan 2018, Accepted 24 Jul 2018, Published online: 31 Aug 2018

References

  • Global Tuberculosis Report [Internet]. Geneva: World Health Organization; [updated 2016; cited 2017 Oct 25]. Available from: http://www.who.int/tb/publications/global_report/en/
  • Sosnik A, Carcaboso AM, Glisoni RJ, et al. New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv Drug Deliv Rev. 2010;62:547–559.
  • Goyal AK, Garg T, Rath G, et al. Chemotherapeutic evaluation of guar gum coated chitosan nanoparticle against experimental tuberculosis. J Biomed Nanotechnol. 2016;12:450–463.
  • Shishoo CJ, Shah SA, Rathod IS, et al. Impaired bioavailability of rifampicin in presence of isoniazid from fixed dose combination (FDC) formulation. Int J Pharm. 2001;228:53–67.
  • Singh S, Mariappan TT, Shankar R, et al. A critical review of the probable reasons for the poor variable bioavailability of rifampicin from anti-tubercular fixed-dose combination (FDC) products, and the likely solutions to the problem. Int J Pharm. 2001;228:5–17.
  • IUATLD/WHO. The promise and reality of fixed-dose combinations with rifampicin. A joint statement of International Union against Tuberculosis and Lung Diseases and the Tuberculosis Programme of the World Health Organisation. 1994.
  • Singh H, Bhandari R, Kaur IP. Encapsulation of Rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with Isoniazid at acidic pH. Int J Pharm. 2013;446:106–111.
  • Shete H, Patravale V. Long chain lipid based tamoxifen NLC. Part I: preformulation studies, formulation development and physicochemical characterization. Int J Pharm. 2013;454:573–583.
  • Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6:231–248.
  • Porter CJ, Pouton CW, Cuine JF, et al. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev. 2008;60:673–691.
  • Pouton CW, Porter CJ. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60:625–637.
  • Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev. 2008;60:702–716.
  • Zilly W, Breimer DD, Richter E. Pharmacokinetic Interactions with Rifampicin. Clinical Pharmacokinetics. 1977;2:61–70.
  • Acocella G. Pharmacokinetics and metabolism of rifampin in humans. Rev Infect Dis. 1983;5 (Suppl 3):S428–S432.
  • Caliph SM, Charman WN, Porter CJH. Effect of short‐, medium‐, and long‐chain fatty acid‐based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph‐cannulated and non‐cannulated rats. J Pharm Sci. 2000;89:1073–1084.
  • Noguchi T, Charman WNA, Stella VJ. The effect of drug lipophilicity and lipid vehicles on the lymphatic absorption of various testosterone esters. Int J Pharm. 1985;24:173–184.
  • O’Driscoll CM. Lipid-based formulations for intestinal lymphatic delivery. Eur J Pharm Sci. 2002;15:405–415.
  • Chaudhary S, Garg T, Murthy RS, et al. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route. J Drug Target. 2014;22:871–882.
  • Singh I, Swami R, Khan W, et al. Lymphatic system: a prospective area for advanced targeting of particulate drug carriers. Expert Opin Drug Deliv. 2014;11:211–229.
  • Shete H, Chatterjee S, De A, et al. Long chain lipid based tamoxifen NLC. Part II: pharmacokinetic, biodistribution and in vitro anticancer efficacy studies. Int J Pharm. 2013;454:584–592.
  • Ali Khan A, Mudassir J, Mohtar N, et al. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int J Nanomed. 2013;8:2733–2744.
  • Cai S, Yang Q, Bagby TR, et al. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv Drug Deliv Rev. 2011;63:901–908.
  • Yanez JA, Wang SW, Knemeyer IW, et al. Intestinal lymphatic transport for drug delivery. Adv Drug Deliv Rev. 2011;63:923–942.
  • Paliwal R, Rai S, Vaidya B, et al. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomed Nanotechnol Biol Med. 2009;5:184–191.
  • Pouplin T, Phuong PN, Toi PV, et al. Isoniazid, pyrazinamide and rifampicin content variation in split fixed-dose combination tablets. PLoS One. 2014;9:e102047.
  • IBorman P, Elder D. Q2(R1) validation of analytical procedures. ICH quality guidelines [Internet]. John Wiley & Sons, Inc. p. 127–166; [cited 2017 Sep 29] Available from: http://dx.doi.org/10.1002/9781118971147.
  • Patel K, Padhye S, Nagarsenker M. Duloxetine HCl lipid nanoparticles: preparation, characterization, and dosage form design. AAPS PharmSciTech. 2012;13:125–133.
  • Singh H, Jindal S, Singh M, et al. Nano-formulation of rifampicin with enhanced bioavailability: development, characterization and in-vivo safety. Int J Pharm. 2015;485:138–151.
  • Dwivedi P, Khatik R, Khandelwal K, et al. Pharmacokinetics study of arteether loaded solid lipid nanoparticles: an improved oral bioavailability in rats. Int J Pharm 2014;466:321–327.
  • Varshosaz J, Eskandari S, Tabbakhian M. Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants. Carbohydrate Polymers. 2012;88:1157–1163.
  • Gaspar DP, Faria V, Goncalves LM, et al. Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: physicochemical and in vitro studies. Int J Pharm. 2016;497:199–209.
  • Pinheiro M, Ribeiro R, Vieira A, et al. Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis. Drug Des Devel Ther. 2016;10:2467–2475.
  • Prabhakar K, Afzal SM, Kumar PU, et al. Brain delivery of transferrin coupled indinavir submicron lipid emulsions-pharmacokinetics and tissue distribution. Colloids Surf B Biointerf. 2011;86:305–313.
  • LiYang YG, Li H, Zhang Y, et al. Enhancement the oral bioavailability of praziquantel by incorporation into solid lipid nanoparticles. Pharmazie. 2009;64:86–89.
  • Subedi RK, Kang KW, Choi HK. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharm Sci. 2009;37:508–513.
  • Ravi PR, Aditya N, Kathuria H, et al. Lipid nanoparticles for oral delivery of raloxifene: optimization, stability, in vivo evaluation and uptake mechanism. Eur J Pharm Biopharm. 2014;87:114–124.
  • Luo Y, Chen D, Ren L, et al. Solid lipid nanoparticles for enhancing vinpocetine's oral bioavailability. J Controlled Release. 2006;114:53–59.
  • Garanti T, Stasik A, Burrow AJ, et al. Anti-glioma activity and the mechanism of cellular uptake of asiatic acid-loaded solid lipid nanoparticles. Int J Pharm. 2016;500:305–315.
  • Kumar PV, Asthana A, Dutta T, et al. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Target. 2006;14:546–556.
  • Ashay Jain AA, Majumder S, Lariya N, et al. Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Release. 2010;148:359–367.
  • Vandal OH, Nathan CF, Ehrt S. Acid resistance in Mycobacterium tuberculosis. J Bacteriol. 2009;191:4714–4721.
  • Gao Y, Sarfraz MK, Clas S-D, et al. Hyaluronic acid-tocopherol succinate-based self-assembling micelles for targeted delivery of rifampicin to alveolar macrophages. J Biomed Nanotechnol. 2015;11:1312–1329.
  • Zhang X, Chen G, Zhang T, et al. Effects of PEGylated lipid nanoparticles on the oral absorption of one BCS II drug: a mechanistic investigation. Int J Nanomedicine. 2014;9:5503–5514.
  • Benito-Gallo P, Franceschetto A, Wong JC, et al. Chain length affects pancreatic lipase activity and the extent and pH-time profile of triglyceride lipolysis. Eur J Pharm Biopharm. 2015;93:353–362.
  • Thomas N, Holm R, Rades T, et al. Characterising lipid lipolysis and its implication in lipid-based formulation development. Aaps J. 2012;14:860–871.
  • Estella-Hermoso de Mendoza A, Campanero MA, Mollinedo F, et al. Lipid nanomedicines for anticancer drug therapy. J Biomed Nanotechnol. 2009;5:323–343.
  • Kalaria DR, Sharma G, Beniwal V, et al. Design of biodegradable nanoparticles for oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats. Pharm Res. 2009;26:492–501.
  • Abdelwahed W, Degobert G, Fessi H. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Eur J Pharm Biopharm. 2006;63:87–94.
  • Pandita D, Ahuja A, Lather V, et al. Development of lipid-based nanoparticles for enhancing the oral bioavailability of paclitaxel. AAPS PharmSciTech. 2011;12:712–722.
  • European Chemicals Agency (ECHA) - Octadecylamine Europe: ECHA EUROPA; 2017 [cited 2017 8 Jan]. Available from: https://echa.europa.eu/brief-profile/-/briefprofile/100.004.270.
  • Harde H, Das M, Jain S. Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin Drug Deliv. 2011;8:1407–1424.
  • Higgins JP, Arrivo SM, Thurau G, et al. Spectroscopic approach for on-line monitoring of particle size during the processing of pharmaceutical nanoparticles. Anal Chem. 2003;75:1777–1785.
  • Sandip S, Chavan SGI, Vavia PR. Preparation and characterization of solid lipid nanoparticle-based nasal spray of budesonide. Drug Deliv and Transl Res. 2012.
  • Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 2012;47:139–151.
  • Torcello-Gómez A, Maldonado-Valderrama J, Jódar-Reyes AB, et al. Interactions between pluronics (F127 and F68) and bile salts (NaTDC) in the aqueous phase and the interface of oil-in-water emulsions. Langmuir 2013;29:2520–2529.
  • Müller RH, Maassen S, Weyhers H, et al. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target. 1996;4:161–170.,
  • Shah M, Agrawal YK, Garala K, et al. Solid lipid nanoparticles of a water soluble drug, ciprofloxacin hydrochloride. Indian J Pharm Sci. 2012;74:434–442.
  • Schwarz C, Mehnert W, Lucks JS, et al. Solid lipid nanoparticles (SLN) for controlled drug delivery-I. Production, characterization and sterilization. J Control Release. 1994;30:83–96.
  • Bhalekar M, Upadhaya P, Madgulkar A. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir. Appl Nanosci. 2017;7:47–57.
  • Vivek K, Reddy H, Murthy RSR. Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS PharmSciTech. 2007;8:16.
  • Muchow M, Maincent P, Muller RH. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev Ind Pharm. 2008;34:1394–1405.
  • Pople P, Singh KK, Rowe RC, et al. Handbook of pharmaceutical excipients. 7th ed. Vol. 18. UK: Informa UK Limited. Pharmaceutical development and technology; 2013.
  • Leroux J-C, Allémann E, Doelker E, et al. New approach for the preparation of nanoparticles by an emulsification-diffusion method. Eur J Pharm Biopharm. 1995;41:14–18.
  • Das S, Ng WK, Kanaujia P, et al. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids Surf B Biointerf. 2011;88:483–489.
  • Sinhmar G, Shah N, Chokshi N, et al. Process, optimization, and characterization of budesonide-loaded nanostructured lipid carriers for the treatment of inflammatory bowel disease. Drug Dev. Ind. Pharm. 2018; 44(7):1078–1089.
  • Bunjes H, Koch MHJ, Westesen K. Influence of emulsifiers on the crystallization of solid lipid nanoparticles. J Pharm Sci. 2003;92:1509–1520.
  • Barzegar-Jalali M, Adibkia K, Valizadeh H, et al. Kinetic analysis of drug release from nanoparticles. J Pharm Pharm Sci. 2008;11:167–177.
  • Patel MM. Formulation and development of di-dependent microparticulate system for colon-specific drug delivery. Drug Deliv Transl Res. 2017;7:312–324.
  • Xu J, Bovet LL, Zhao K. Taste masking microspheres for orally disintegrating tablets. Int J Pharm. 2008;359:63–69.
  • Jose S, Prema MT, Chacko AJ, et al. Colon specific chitosan microspheres for chronotherapy of chronic stable angina. Colloids Surf B Biointerf. 2011;83:277–283.
  • Ricardo Alves TVdSR, P, Mercuri L. C C d, Silva J. d R, Matos S, Storpírtis L. Thermal behavior and decomposition kinetics of rifampicin polymorphs under isothermal and non-isothermal conditions. Braz J Pharm Sci. 2010;46:343.
  • Gallo GG, Radaelli P. Rifampin. In: Florey K, editor. Analytical profiles of drug substances. Vol. 5. New York (NY): Academic Press; 1976. p. 467–513.
  • Ibiapino AL, Seiceira RC, Pitaluga A, et al. Structural characterization of form I of anhydrous rifampicin. CrystEngComm. 2014;16:8555.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.