444
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Delivery of pDNA to lung epithelial cells using PLGA nanoparticles formulated with a cell-penetrating peptide: understanding the intracellular fate

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 427-442 | Received 12 Sep 2019, Accepted 26 Jan 2020, Published online: 18 Feb 2020

References

  • Teo PY, Cheng W, Hedrick JL, et al. Co-delivery of drugs and plasmid DNA for cancer therapy. Adv Drug Deliv Rev. 2016;98(1):41–63.
  • Mann A, Thakur G, Shukla V, et al. Differences in DNA condensation and release by lysine and arginine homopeptides govern their DNA delivery efficiencies. Mol Pharmaceutics. 2011;8(5):1729–1741.
  • Mann A, Shukla V, Khanduri R, et al. Linear short histidine and cysteine modified arginine peptides constitute a potential class of DNA delivery agents. Mol Pharmaceutics. 2014;11(3):683–696.
  • Gomes Dos Reis L, Svolos M, Hartwig B, et al. Inhaled gene delivery: a formulation and delivery approach. Expert Opinion Drug Deliv. 2017;14(3):319–330.
  • He C, Hu Y, Yin L, et al. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–3666.
  • Claudia M, Kristin O, Jennifer O, et al. Comparison of fluorescence-based methods to determine nanoparticle uptake by phagocytes and non-phagocytic cells in vitro. Toxicology. 2017;378:25–36.
  • Kim JA, Aberg C, Salvati A, et al. Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nature Nanotech. 2012;7(1):62–68.
  • Lee W-H, Loo C-Y, Traini D, et al. Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges. Asian J Pharm Sci. 2015;10(6):481–489.
  • Gentile P, Chiono V, Carmagnola I, et al. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. IJMS. 2014;15(3):3640–3659.
  • Liu BR, Lo SY, Liu CC, et al. Endocytic trafficking of nanoparticles delivered by cell-penetrating peptides comprised of nona-arginine and a penetration accelerating sequence. PLOS One. 2013;8(6):e67100.
  • Raghava G. CPPsite 2.0 database of cell-penetrating peptides, Chandigarh, India [updated 2015 Apr; cited 2017 Nov 15]. Available from: http://crdd.osdd.net/raghava/cppsite/.
  • Gomes dos Reis L, Lee W-H, Svolos M, et al. Nanotoxicologic effects of PLGA nanoparticles formulated with a cell-penetrating peptide: searching for a safe pDNA delivery system for the lungs. Pharmaceutics. 2019;11(1):12.
  • Shahbazi MA, Almeida PV, Correia A, et al. Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticles. J Control Rel. 2017;249:111–122.
  • Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opinion Drug Deliv. 2010;7(4):429–444.
  • Hines DJ, Kaplan DL. Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights. Crit Rev Ther Drug Carrier Syst. 2013;30(3):257–276.
  • Bannunah AM, Vllasaliu D, Lord J, et al. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Mol Pharmaceutics. 2014;11(12):4363–4373.
  • Kuhn DA, Vanhecke D, Michen B, et al. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J Nanotechnol. 2014;5:1625–1636.
  • Preta G, Cronin JG, Sheldon IM. Dynasore - not just a dynamin inhibitor. Cell Commun Signal. 2015;13(1):24.
  • Zhang YM, Chang DC, Zhang J, et al. Cyclen-based double-tailed lipids for DNA delivery: synthesis and the effect of linking group structures. Bioorgan Med Chem. 2015;23(17):5756–5763.
  • Gambinossi F, Mylon SE, Ferri JK. Aggregation kinetics and colloidal stability of functionalized nanoparticles. Adv Colloid Interface Sci. 2015;222:332–349.
  • Fang C, Bhattarai N, Sun C, et al. Functionalized nanoparticles with long-term stability in biological media. Small. 2009;5(14):1637–1641.
  • Cheng CJ, Saltzman WM. Polymer nanoparticle-mediated delivery of microRNA inhibition and alternative splicing. Mol Pharmaceutics. 2012;9(5):1481–1488.
  • Tang J, Chen JY, Liu J, et al. Calcium phosphate embedded PLGA nanoparticles: a promising gene delivery vector with high gene loading and transfection efficiency. Int J Pharm. 2012;431(1–2):210–221.
  • Dördelmann G, Kozlova D, Karczewski S, et al. Calcium phosphate increases the encapsulation efficiency of hydrophilic drugs (proteins, nucleic acids) into poly(d,l-lactide-co-glycolide acid) nanoparticles for intracellular delivery. J Mater Chem B. 2014;2(41):7250–7259.
  • Liu Y, Deng X. Influences of preparation conditions on particle size and DNA-loading efficiency for poly(DL-lactic acid-polyethylene glycol) microspheres entrapping free DNA. J Control Rel. 2002;83(1):147–155.
  • Sourabhan S, Kaladhar K, Sharma CP. Method to enhance the encapsulation of biologically active molecules in PLGA nanoparticles. Trends Biomater Artif Organs. 2009;22 (3):5.
  • Centelles MN, Qian C, Campanero MA, et al. New methodologies to characterize the effectiveness of the gene transfer mediated by DNA-chitosan nanoparticles. Int J Nanomed. 2008;3(4):451–460.
  • Trabulo S, Cardoso AL, Mano M, et al. Cell-penetrating peptides—mechanisms of cellular uptake and generation of delivery systems. Pharmaceuticals. 2010;3(4):961–993.
  • Cohen H, Levy RJ, Gao J, et al. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther. 2000;7(22):1896–1905.
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377–1397.
  • Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–133.
  • Suchaoin W, Pereira de Sousa I, Netsomboon K, et al. Development and in vitro evaluation of zeta potential changing self-emulsifying drug delivery systems for enhanced mucus permeation. Int J Pharm. 2016;510(1):255–262.
  • Porsio B, Craparo EF, Mauro N, et al. Mucus and cell-penetrating nanoparticles embedded in nano-into-micro formulations for pulmonary delivery of Ivacaftor in patients with cystic fibrosis. ACS Appl Mater Interfaces. 2018;10(1):165–181.
  • Wallbrecher R, Verdurmen WP, Schmidt S, et al. The stoichiometry of peptide-heparan sulfate binding as a determinant of uptake efficiency of cell-penetrating peptides. Cellular Mol Life Sci. 2014;71(14):2717–2729.
  • Liu P, Sun Y, Wang Q, et al. Intracellular trafficking and cellular uptake mechanism of mPEG-PLGA-PLL and mPEG-PLGA-PLL-Gal nanoparticles for targeted delivery to hepatomas. Biomaterials. 2014;35(2):760–770.
  • Jiang L, Li X, Liu L, et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified pullulan nanoparticles. Int J Nanomed. 2013;8:1825–1834.
  • Kou L, Sun J, Zhai Y, et al. The endocytosis and intracellular fate of nanomedicines: Implication for rational design. Asian J Pharm Sci. 2013;8(1):1–10.
  • Barua S, Rege K. Cancer-cell-phenotype-dependent differential intracellular trafficking of unconjugated quantum dots. Small. 2009;5(3):370–376.
  • Rejman J, Oberle V, Zuhorn IS, et al. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377(1):159–169.
  • Cheng CJ, Saltzman WM. Enhanced siRNA delivery into cells by exploiting the synergy between targeting ligands and cell-penetrating peptides. Biomaterials. 2011;32(26):6194–6203.
  • Reilly MJ, Larsen JD, Sullivan MO. Polyplexes traffic through caveolae to the Golgi and endoplasmic reticulum en route to the nucleus. Mol Pharm. 2012;9(5):1280–1290.
  • Liang W,W, Lam JK. Endosomal escape pathways for non-viral nucleic acid delivery systems. London: Intechopen; 2012.
  • Bolhassani A. Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim Biophys Acta. 2011;1816(2):232–246.
  • Minchin RF, Yang S. Endosomal disruptors in non-viral gene delivery. Expert Opinion Drug Delivery. 2010;7(3):331–339.
  • Andries O, De Filette M, Rejman J, et al. Comparison of the gene transfer efficiency of mRNA/GL67 and pDNA/GL67 complexes in respiratory cells. Mol Pharm. 2012;9(8):2136–2145.
  • Pickel L, Matsuzuka T, Doi C, et al. Over-expression of angiotensin II type 2 receptor gene induces cell death in lung adenocarcinoma cells. Cancer Biol Ther. 2010;9(4):277–285.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.