143
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Comparison between novel star-like redox-sensitive amphiphilic block copolymer and its linear counterpart copolymer as nanocarriers for doxorubicin

ORCID Icon, ORCID Icon & ORCID Icon
Pages 646-658 | Received 26 Jan 2020, Accepted 04 Mar 2020, Published online: 03 Apr 2020

References

  • Wild CP, Stewart BW, editors. World cancer report 2014. Geneva, Switzerland: World Health Organization; 2014.
  • Kim KY. Nanotechnology platforms and physiological challenges for cancer therapeutics. In Nanomedicine in Cancer. 2017;1:27–46.
  • Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157–170.
  • Arcamone F. Doxorubicin: anticancer antibiotics. In: Destevens G, editor. Studies with Living Systems. Milano (Italy): Elsevier; 2012. p. 153.
  • Wicki A, Witzigmann D, Balasubramanian V, et al. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–157.
  • Mitra S, Gaur U, Ghosh PC, et al. Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release. 2001;74(1–3):317–323.
  • Sun K, Wang J, Zhang J, et al. Dextran–g–PEI nanoparticles as a carrier for co-delivery of adriamycin and plasmid into osteosarcoma cells. Int J Biol Macromol. 2011;49(2):173–180.
  • Tan ML, Friedhuber AM, Dunstan DE, et al. The performance of doxorubicin encapsulated in chitosan–dextran sulphate microparticles in an osteosarcoma model. Biomaterials. 2010;31(3):541–551.
  • Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther. 2014; 110(4):853–858.
  • Lemmouchi Y, Perry MC, Amass AJ, et al. Novel synthesis of biodegradable amphiphilic linear and star block copolymers based on poly (ε‐caprolactone) and poly (ethylene glycol.). J Polym Sci A Polym Chem. 2007;45(17):3975–3985.
  • Dong P, Wang X, Gu Y, et al. Self-assembled biodegradable micelles based on star-shaped PCL-b-PEG copolymers for chemotherapeutic drug delivery. Colloids Surf, A Physicochem Eng Asp. 2010;358(1–3):128–134. Apr 5
  • Nabid MR, Rezaei SJ, Sedghi R, et al. Self-assembled micelles of well-defined pentaerythritol-centered amphiphilic A4B8 star-block copolymers based on PCL and PEG for hydrophobic drug delivery. Polymer. 2011;52(13):2799–2809.
  • Diao YY, Li HY, Fu YH, Han M, et al. Doxorubicin-loaded PEG-PCL copolymer micelles enhance cytotoxicity and intracellular accumulation of doxorubicin in adriamycin-resistant tumor cells. Int J Nanomedicine. 2011;6:1955–1962.
  • Hatakeyama H, Akita H, Harashima H. The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull. 2013;36(6):892–899.
  • Thambi T, Lee DS. Stimuli-responsive polymersomes for cancer therapy. In Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications. 2019. Cambridge (UK): Woodhead Publishing. p. 413–438.
  • Jia T, Huang S, Yang C, et al. Unimolecular micelles of amphiphilic cyclodextrin-core star-like copolymers with covalent pH-responsive linkage of anticancer prodrugs. Mol Pharm. 2017;14(8):2529–2537.
  • Cheng R, Feng F, Meng F, et al. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release. 2011;152(1):2–12.
  • Noh J, Kwon B, Han E, et al. Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death. Nat Commun. 2015;6:6907.
  • (a) Xu Y, Wang L, Li YK, Wang CQ. Reduction and pH dual-responsive nanoparticles based chitooligosaccharide-based graft copolymer for doxorubicin delivery. Colloids Surf. A. 2016;497:8–15. (b) Wu W, Wang W, Li J. Star polymers: Advances in biomedical applications. Prog Polym Sci. 2015;46:55–85.
  • Fan X, Wang X, Cao M, et al. Y”-shape armed amphiphilic star-like copolymers: design, synthesis and dual-responsive unimolecular micelle formation for controlled drug delivery. Polym Chem. 2017;8(36):5611–5620.
  • Xia Y, Wang N, Qin Z, et al. Polycarbonate-based core-crosslinked redox-responsive nanoparticles for targeted delivery of anticancer drug. J Mater Chem B. 2018;6(20):3348–3357.
  • Wang J, Yang G, Guo X, et al. Redox-responsive polyanhydride micelles for cancer therapy. Biomaterials. 2014;35(9):3080–3090.
  • Xie W, Jiang N, Gan Z. Effects of multi‐arm structure on crystallization and biodegradation of star‐shaped poly (ε‐caprolactone. Macromol Biosci. 2008;8(8):775–784.
  • Wu W, Wang W, Li J. Star polymers: Advances in biomedical applications. Prog. Polym. Sci. 2015;46:55–85.
  • Yang DP, Cao M, Han G, Duan W, et al. Synthesis of multi-arm star thermo-responsive polymers and topology effects on phase transition. Polym Chem. 2018;9(19):2625–2633.
  • Fukukawa KI, Rossin R, Hagooly A, Pressly ED, Hunt JN, Messmore BW, Hawker CJ. Synthesis and characterization of core–shell star copolymers for in vivo PET imaging applications. Biomacromolecules. 2008;9(4):1329–39.
  • Hoffmann S, Vystrčilová L, Ulbrich K, et al. Dual fluorescent HPMA copolymers for passive tumor targeting with pH-sensitive drug release: synthesis and characterization of distribution and tumor accumulation in mice by noninvasive multispectral optical imaging. Biomacromolecules. 2012;13(3):652–663.
  • Chytil P, Hoffmann S, Schindler L, et al. Dual fluorescent HPMA copolymers for passive tumor targeting with pH-sensitive drug release II: Impact of release rate on biodistribution. J Control Release. 2013;172(2):504–512.
  • Yang D, Armitage B, Marder SR. Cubic liquid‐crystalline nanoparticles. Angew Chem Int Ed Engl. 2004;43(34):4402–4409.
  • Huang Y, Gui S. Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. RSC Adv. 2018;8(13):6978–6987.
  • Lee H, Fonge H, Hoang B, et al. The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. Mol Pharm. 2010;267(4):1195–1208.
  • Hao Y, Huang Y, He Y, et al. The evaluation of cellular uptake efficiency and tumor-targeting ability of MPEG–PDLLA micelles: effect of particle size. RSC Adv. 2016;6(17):13698–13709.
  • Deng C, Jiang Y, Cheng R, et al. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today. 2012; Oct 17(5):467–480.
  • Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharm Des. 2006;12(36):4669–4684.
  • Huh J, Kim KH, Ahn CH, et al. Micellization behavior of star-block copolymers in a selective solvent: a Brownian dynamics simulation approach. J Chem Phys. 2004; Sep 8121(10):4998–5004.
  • Voulgaris D, Tsitsilianis C, Grayer V, et al. Amphiphile micelles formed by polystyrene/poly (2-vinyl pyridine) heteroarm star copolymers in toluene. Polymer. 1999;40(21):5879–5889.
  • Deng M, Chen X, Piao L, et al. Synthesis of four‐armed poly (ε‐caprolactone)‐block‐poly (ethylene oxide) by diethylzinc catalyst. J Polym Sci A Polym Chem. 2004; Feb 1542(4):950–959.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.