134
Views
16
CrossRef citations to date
0
Altmetric
Research Articles

A plausible way for excretion of metal nanoparticles via active targeting

ORCID Icon
Pages 744-750 | Received 27 Jan 2020, Accepted 01 Apr 2020, Published online: 15 Apr 2020

References

  • Vinluan RD 3rd, Zheng J. Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomedicine (Lond). 2015;10(17):2781–2794.
  • Choi HS, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25(10):1165–1170.
  • Zhou C, Long M, Qin Y, et al. Luminescent gold nanoparticles with efficient renal clearance. Angew Chem Int Ed. 2011;50(14):3168–3172.
  • Chen H, Wang GD, Tang W, et al. Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging. Adv Mater. 2014;26(39):6761–6766.
  • Vinluan RD, Liu J, Zhou C, et al. Glutathione-coated luminescent gold nanoparticles: a surface ligand for minimizing serum protein adsorption. ACS Appl Mater Interfaces. 2014;6(15):11829–11833.
  • Lim JK, Majetich SA, Tilton RD. Stabilization of superparamagnetic iron oxide core-gold shell nanoparticles in high ionic strength media. Langmuir. 2009;25(23):13384–13393.
  • Abdellatif A A H, Ibrahim M A, Amin M A, et al. Cetuximab Conjugated with Octreotide and Entrapped Calcium Alginate-beads for Targeting Somatostatin Receptors. Sci Rep. 2020;10(1)doi:10.1038/s41598-020-61605-y.
  • Bhandari S, Watson N, Long E, et al. Expression of somatostatin and somatostatin receptor subtypes 1–5 in human normal and diseased kidney. J Histochem Cytochem. 2008;56(8):733–743.
  • Abdellatif AAH, Abou-Taleb HA, El Ghany AAA, et al. Targeting of somatostatin receptors expressed in blood cells using quantum dots coated with vapreotide. Saudi Pharm J. 2018;26(8):1162–1169.
  • Mangeolle T, Yakavets I, Lequeux N, et al. The targeting ability of fluorescent quantum dots to the folate receptor rich tumors. Photodiagnosis Photodyn Ther. 2019;26:150–156.
  • Nasrollahi F, Koh YR, Chen P, et al. Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging. Mater Sci Eng C Mater Biol Appl. 2019;94:247–257.
  • Okuyucu K, Alagoz E, Arslan N, et al. Thyrotropinoma with Graves’ disease detected by the fusion of indium-111 octreotide scintigraphy and pituitary magnetic resonance imaging. Indian J Nucl Med. 2016;31(2):141–143.
  • Reubi JC, Schar JC, Waser B, et al. Affinity profiles for human somatostatin receptor subtypes SST1–SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27(3):273–282.
  • Abdellatif AAH, Abdelhafez WA, Sarhan HA. Somatostatin decorated quantum dots for targeting of somatostatin receptors. Iran J Pharm Res. 2018;17(2):513–524.
  • Amartey JK. Technetium-99m labeled somatostatin and analogs: synthesis, characterization and in vivo evaluation. Nucl Med Biol. 1993;20(4):539–543.
  • Abdellatif A A H.Identification of somatostatin receptors using labeled PEGylated octreotide, as an active internalization. Drug Dev. Ind. Pharm. 2019;45(10):1707–1715. doi:10.1080/03639045.2019.1656735.
  • Takemoto M, Asker N, Gerhardt H, et al. A New Method for Large Scale Isolation of Kidney Glomeruli from Mice. The American Journal of Pathology. 2002;161(3):799–805. doi:10.1016/S0002-9440(10)64239-3.
  • Mudunkotuwa I A, Anthony T R, Grassian V H, et al. Accurate quantification of tio 2 nanoparticles collected on air filters using a microwave-assisted acid digestion method. Journal of Occupational and Environmental Hygiene. 2016;13(1):30–39. doi:10.1080/15459624.2015.1072278.
  • Abdellatif AAH, Aldalaen SM, Faisal W, et al. Somatostatin receptors as a new active targeting sites for nanoparticles. Saudi Pharm J. 2018;26(7):1051–1059.
  • Abdellatif A A H, Tawfeek H M.Development and evaluation of fluorescent gold nanoparticles. Drug Dev. Ind. Pharm. 2018;44(10):1679–1684. doi:10.1080/03639045.2018.1483400.
  • Abdellatif AAH. Octreotide labelled fluorescein isothiocyanate for identification of somatostatin receptor subtype 2. Biochem Physiol. 2015;4(4):2.
  • Rudolf K, Eberlein W, Engel W, et al. The first highly potent and selective non-peptide neuropeptide Y Y1 receptor antagonist: BIBP3226. Eur J Pharmacol. 1994;271(2–3):R11–R13.
  • Korner M, Waser B, Reubi JC. High expression of neuropeptide y receptors in tumors of the human adrenal gland and extra-adrenal paraganglia. Clin Cancer Res. 2004;10(24):8426–8433.
  • Litau S, Niedermoser S, Vogler N, et al. Next generation of SiFAlin-based TATE derivatives for PET imaging of SSTR-positive tumors: influence of molecular design on in vitro SSTR binding and in vivo pharmacokinetics. Bioconjugate Chem. 2015;26(12):2350–2359.
  • Arlauckas SP, Garris CS, Kohler RH, et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med. 2017;9(389):eaal3604.
  • Costa SA, Mozhdehi D, Dzuricky MJ, et al. Active targeting of cancer cells by nanobody decorated polypeptide micelle with bio-orthogonally conjugated drug. Nano Lett. 2019;19(1):247–254.
  • Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. IJN. 2018;13:3921–3935.
  • Jarad G, Miner JH. Update on the glomerular filtration barrier. Curr Opin Nephrol Hypertens. 2009;18(3):226–232.
  • Abdellatif AAH, Zayed G, El-Bakry A, et al. Novel gold nanoparticles coated with somatostatin as a potential delivery system for targeting somatostatin receptors. Drug Dev Ind Pharm. 2016;42(11):1782–1791.
  • Tenzer S, Docter D, Rosfa S, et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. Acs Nano. 2011;5(9):7155–7167.
  • Dobrovolskaia MA, Patri AK, Zheng JW, et al. Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomed-Nanotechnol. 2009;5(2):106–117.
  • Shah J, Singh S. CHAPTER 1. Nanoparticle–protein corona complex: composition, kinetics, physico–chemical characterization, and impact on biomedical applications. In: Nanoparticle–Protein Corona. Issues in Toxicology. 2019:1–30.
  • Aggarwal P, Hall JB, McLeland CB, et al. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliver Rev. 2009;61(6):428–437.
  • Dutta D, Sundaram SK, Teeguarden JG, et al. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci. 2007;100(1):303–315.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.