207
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and characterization of meloxicam eutectics with mandelic acid and saccharin for enhanced solubility

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1092-1099 | Received 14 Mar 2020, Accepted 23 May 2020, Published online: 12 Jun 2020

References

  • Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5(5):442–453.
  • Vioglio PC, Chierotti MR, Gobetto R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv Drug Deliv Rev. 2017;117:86–110.
  • Takagi T, Ramachandran C, Bermejo M, et al. A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Mol Pharm. 2006;3(6):631–643.
  • Vignaduzzo S, Castellano P, Kaufman TS. Development and validation of a dissolution test for meloxicam and pridinol mesylate from combined tablet formulation. Indian J Pharm Sci. 2010;72(2):197–203.
  • Chen J, Gao Y. Strategies for meloxicam delivery to and across the skin: a review. Drug Deliv. 2016;23(8):3146–3156.
  • Byrn SR, Zografi G, Chen XS. Solid state properties of pharmaceutical materials. Hoboken (NJ): John Wiley & Sons, Inc.; 2017.
  • Cherukuvada S, Guru Row TN. Comprehending the formation of eutectics and cocrystals in terms of design and their structural interrelationships. Cryst Growth Des. 2014;14(8):4187–4198.
  • Haneef J, Chadha R. Drug-drug multicomponent solid forms: cocrystal, coamorphous and eutectic of three poorly soluble antihypertensive drugs using mechanochemical approach. AAPS PharmSciTech. 2017;18(6):2279–2290.
  • Cherukuvada S, Nangia A. Eutectics as improved pharmaceutical materials: design, properties and characterization. Chem Commun (Camb).). 2014;50(8):906–923.
  • Figueirêdo CBM, Nadvorny D, de Medeiros Vieira ACQ, et al. Enhancement of dissolution rate through eutectic mixture and solid solution of posaconazole and benznidazole. Int J Pharm. 2017;525(1):32–42.
  • Hyun SM, Lee BJ, Abuzar SM, et al. Preparation, characterization, and evaluation of celecoxib eutectic mixtures with adipic acid/saccharin for improvement of wettability and dissolution rate. Int J Pharm. 2019;554:61–71.
  • Alshaikh RA, Essa EA, El Maghraby GM. Eutexia for enhanced dissolution rate and anti-inflammatory activity of nonsteroidal anti-inflammatory agents: Caffeine as a melting point modulator. Int J Pharm. 2019;563:395–405.
  • Pagire SK, Jadav N, Vangala VR, et al. Thermodynamic investigation of carbamazepine-saccharin co-crystal polymorphs. J Pharm Sci. 2017;106(8):2009–2014.
  • Basavoju S, Boström D, Velaga SP. Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharm Res. 2008;25(3):530–541.
  • Tumanova N, Payen R, Springuel G, et al. Cocrystallization out of the blue: dl-mandelic acid/ethyl-dl-mandelate cocrystal. J Mol Struct. 2017;1127:397–402.
  • Zhang SW, Harasimowicz MT, de Villiers MM, et al. Cocrystals of nicotinamide and (R)-mandelic acid in many ratios with anomalous formation properties. J Am Chem Soc. 2013;135(50):18981–18989.
  • Motamedifar M, Bazargani A, Namazi MR, et al. Antimicrobial activity of mandelic acid against methicillin-resistant Staphylococcus aureus: a novel finding with important practical implications. World Appl Sci J. 2014;31:925–929.
  • Wouters J, Quéré L, editors. Pharmaceutical salts and co-crystals. Cambridge (UK): Royal Society of Chemistry; 2011.
  • Douroumis D, Ross SA, Nokhodchi A. Advanced methodologies for cocrystal synthesis. Adv Drug Deliv Rev. 2017;117:178–195.
  • Reggane M, Wiest J, Saedtler M, et al. Bioinspired co-crystals of imatinib providing enhanced kinetic solubility. Eur J Pharm Biopharm. 2018;128:290–299.
  • Scheubel E, Lindenberg M, Beyssac E, et al. Small volume dissolution testing as a powerful method during pharmaceutical development. Pharmaceutics. 2010;2(4):351–363.
  • USP. USP Dissolution Apparatus. United State Pharmacopeia. 2011. Available from: https://www.usp.org/sites/default/files/usp/document/harmonization/gen-method/stage_6_monograph_25_feb_2011.pdf.
  • Oliveira É, Azevedo R, Bonfilio R, et al. Dissolution test optimization for meloxicam in the tablet pharmaceutical form. Braz J Pharm Sci. 2009;45(1):67–73.
  • Fernandes RP, Nascimento A, Carvalho ACS, et al. Mechanochemical synthesis, characterization, and thermal behavior of meloxicam cocrystals with salicylic acid, fumaric acid, and malic acid. J Therm Anal Calorim. 2019;138(1):765–777.
  • Kobayashi Y, Ito S, Itai S, et al. Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate. Int J Pharm. 2000;193(2):137–146.
  • Sathisaran I, Dalvi S. Engineering cocrystals of poorly water-soluble drugs to enhance dissolution in. Aqueous Medium Pharm. 2018;10(3):108.
  • Dalal N, Buckner IS, Wildfong P. Experimental determination and theoretical calculation of the eutectic composition of cefuroxime axetil diastereomers. AAPS PharmSciTech. 2017;18(7):2570–2578.
  • Groom CR, Bruno IJ, Lightfoot MP, et al. The cambridge structural database. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016;72(Pt 2):171–179.
  • Daurio D, Medina C, Saw R, et al. Application of twin screw extrusion in the manufacture of cocrystals, part i: four case studies. Pharmaceutics. 2011;3(3):582–600.
  • Nascimento A, Caires FJ, Gomes DJC, et al. Thermal behaviour of nicotinic acid, sodium nicotinate and its compounds with some bivalent transition metal ions. Thermochim Acta. 2014;575:212–218.
  • Gomes DJC, Caires FJ, Lima LS, et al. Thermal behaviour of mandelic acid, sodium mandelate and its compounds with some bivalent transition metal ions. Thermochim Acta. 2012;533:16–21.
  • de Carvalho LC, Segato MP, Nunes RS, et al. Thermoanalytical studies of some sweeteners. J Therm Anal Calorim. 2009;97(1):359–365.
  • Badawi HM, Förner W. Analysis of the infrared and Raman spectra of phenylacetic acid and mandelic (2-hydroxy-2-phenylacetic) acid. Spectrochim Acta A Mol Biomol Spectrosc. 2011;78(3):1162–1167.
  • Thakuria R, Thakur TS. Supramolecular chemistry II. Amsterdam (NLD): Elsevier; 2017.
  • Suresh K, Khandavilli UBR, Gunnam A, et al. Polymorphism, isostructurality and physicochemical properties of glibenclamide salts. CrystEngComm. 2017;19(6):918–929.
  • Aitipamula S, Chow PS, Tan R. Polymorphism in cocrystals: a review and assessment of its significance. CrystEngComm. 2014;16(17):3451.
  • Drebushchak VA, Ogienko AG, Boldyreva EV. Polymorphic effects at the eutectic melting in the H2O–glycine system. J Therm Anal Calorim. 2013;111(3):2187–2194.
  • Bhatia A, Chopra S, Nagpal K, et al. Dosage form design parameters. San Diego (CA): Elsevier; 2018.
  • Smith BT. Remington education: physical pharmacy. London (UK): Pharmaceutical Press; 2016.
  • Censi R, Di Martino P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules. 2015;20(10):18759–18776.
  • Cheney ML, Weyna DR, Shan N, et al. Supramolecular architectures of meloxicam carboxylic acid cocrystals, a crystal engineering case study. Cryst Growth Des. 2010;10(10):4401–4413.
  • Healy AM, Worku ZA, Kumar D, et al. Pharmaceutical solvates, hydrates and amorphous forms: a special emphasis on cocrystals. Adv Drug Deliv Rev. 2017;117:25–46.
  • Al-Hashimi N, Begg N, Alany R, et al. Oral modified release multiple-unit particulate systems: compressed pellets. Microparticles Nanoparticles Pharm. 2018;10(4):176.
  • Sun J, Wang F, Sui Y, et al. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals. Int J Nanomed. 2012;7:5733–5744.
  • Noguera P, Abad M, Puchades R, et al. Influence of particle size on physical and chemical properties of coconut coir dust as container medium. Commun Soil Sci Plant Anal. 2003;34(3-4):593–605.
  • Kudo Y, Yasuda M, Matsusaka S. Effect of particle size distribution on flowability of granulated lactose. Adv Powder Technol. 2020;31(1):121–127.
  • Zhang Y, Zhang D, Zhang Y, et al. Improving solubility and avoiding hygroscopicity of tetrahydroberberine by forming hydrochloride salts by introducing solvents: [HTHB]Cl, [HTHB]Cl·CH3OH and [HTHB]Cl·CH3 COOH. New J Chem. 2017;41(22):13268–13275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.