409
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Formulation of pluronic F127/TPGS mixed micelles to improve the oral absorption of glycyrrhizic acid

, , , , , & show all
Pages 1100-1107 | Received 22 Mar 2020, Accepted 12 May 2020, Published online: 08 Jun 2020

References

  • Chen K, Yang R, Shen F, et al. Advances in pharmacological activities and mechanisms of glycyrrhizic acid. Curr Med Chem. 2019;26:1–22.
  • Selyutina OY, Polyakov NE. Glycyrrhizic acid as a multifunctional drug carrier – from physicochemical properties to biomedical applications: a modern insight on the ancient drug. Int J Pharm. 2019;559:271–279.
  • Li JY, Cao HY, Liu P, et al. Glycyrrhizic acid in the treatment of liver diseases: literature review. Biomed Res Int. 2014;2014:872139.
  • Sun ZG, Zhao TT, Lu N, et al. Research progress of glycyrrhizic acid on antiviral activity. Mini Rev Med Chem. 2019;19(10):826–832.
  • Bernela M, Ahuja M, Thakur R. Enhancement of anti-inflammatory activity of glycyrrhizic acid by encapsulation in chitosan-katira gum nanoparticles. Eur J Pharm Biopharm. 2016;105:141–147.
  • Nazari S, Rameshrad M, Hosseinzadeh H. Toxicological effects of Glycyrrhiza glabra (Licorice): a review. Phytother Res. 2017;31(11):1635–1650.
  • Hu Q, Lian JP, Xu Y, et al. Preparation of glycyrrhizic acid liposomes and evaluation its liver targeting property in mice. Acta Lab Anim Sci Sin. 2015;23(4):401–405.
  • Jin S, Fu S, Han J, et al. Improvement of oral bioavailability of glycyrrhizin by sodium deoxycholate/phospholipid-mixed nanomicelles. J Drug Target. 2012;20(7):615–622.
  • Pauli G, Tang WL, Li SD. Development and characterization of the solvent-assisted active loading technology (SALT) for liposomal loading of poorly water-soluble compounds. Pharmaceutics. 2019;11(9):465.
  • Lombardo D, Calandra P, Caccamo MT, et al. Colloidal stability of liposomes. Pharmaceutics. 2019;11(9):465.
  • Naskar S, Sharma S, Kuotsu K. Chitosan-based nanoparticles: an overview of biomedical applications and its preparation. Drug Deliv Sci Technol. 2019;49:66–81.
  • Tan Y, Qi J, Lu Y, et al. Lecithin in mixed micelles attenuates the cytotoxicity of bile salts in Caco-2 cells. Toxicol In Vitro. 2013;27(2):714–720.
  • Dial EJ, Rooijakkers SH, Darling RL, et al. Role of phosphatidylcholine saturation in preventing bile salt toxicity to gastrointestinal epithelia and membranes. J Gastroenterol Hepatol. 2008;23(3):430–436.
  • Liu X, Chen Y, Chen X, et al. Enhanced efficacy of baicalin-loaded TPGS polymeric micelles against periodontitis. Mater Sci Eng C Mater Biol Appl. 2019;101:387–395.
  • Saxena V, Hussain MD. Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer. Int J Nanomedicine. 2012;7:713–721.
  • Piazzini V, D’Ambrosio M, Luceri C, et al. Formulation of nanomicelles to improve the solubility and the oral absorption of silymarin. Molecules. 2019;24(9):1688.
  • Shen H, He D, Wang S, et al. Preparation, characterization, and pharmacokinetics study of a novel genistein-loaded mixed micelles system. Drug Dev Ind Pharm. 2018;44(9):1536–1542.
  • Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur J Pharm Biopharm. 2017;113:211–228.
  • Deshmukh AS, Chauhan PN, Noolvi MN, et al. Polymeric micelles: basic research to clinical practice. Int J Pharm. 2017;532(1):249–268.
  • Sun Y, Li Y, Shen Y, et al. Enhanced oral delivery and anti-gastroesophageal reflux activity of curcumin by binary mixed micelles. Drug Dev Ind Pharm. 2019;45(9):1444–1450.
  • Sun C, Li W, Ma P, et al. Development of TPGS/F127/F68 mixed polymeric micelles: enhanced oral bioavailability and hepatoprotection of syringic acid against carbon tetrachloride-induced hepatotoxicity. Food Chem Toxicol. 2020;137:111126.
  • Chen T, Tu L, Wang G, et al. Multi-functional chitosan polymeric micelles as oral paclitaxel delivery systems for enhanced bioavailability and anti-tumor efficacy. Int J Pharm. 2020;578:119105.
  • Sze LP, Li HY, Lai KLA, et al. Oral delivery of paclitaxel by polymeric micelles: a comparison of different block length on uptake, permeability and oral bioavailability. Colloids Surf B Biointerfaces. 2019;184:110554.
  • Zeng YC, Li S, Liu C, et al. Soluplus micelles for improving the oral bioavailability of scopoletin and their hypouricemic effect in vivo. Acta Pharmacol Sin. 2017;38(3):424–433.
  • Bodratti AM, Alexandridis P. Amphiphilic block copolymers in drug delivery: advances in formulation structure and performance. Expert Opin Drug Deliv. 2018;15(11):1085–1104.
  • Chen D, Xia D, Li X, et al. Comparative study of Pluronic(®) F127-modified liposomes and chitosan-modified liposomes for mucus penetration and oral absorption of cyclosporine A in rats. Int J Pharm. 2013;449(1–2):1–9.
  • Li X, Chen D, Le C, et al. Novel mucus-penetrating liposomes as a potential oral drug delivery system: preparation, in vitro characterization, and enhanced cellular uptake. Int J Nanomedicine. 2011;6:3151–3162.
  • Wang H, Williams GR, Wu J, et al. Pluronic F127-based micelles for tumor-targeted bufalin delivery. Int J Pharm. 2019;559:289–298.
  • Guo Y, Luo J, Tan S, et al. The applications of vitamin E TPGS in drug delivery. Eur J Pharm Sci. 2013;49(2):175–186.
  • Yang C, Wu T, Qi Y, et al. Recent advances in the application of vitamin E TPGS for drug delivery. Theranostics. 2018;8(2):464–485.
  • Gao ZG, Fain HD, Rapoport N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J Control Release. 2005;102(1):203–222.
  • Thanitwatthanasak S, Sagis LC, Chitprasert P. Pluronic F127/Pluronic P123/vitamin E TPGS mixed micelles for oral delivery of mangiferin and quercetin: mixture-design optimization, micellization, and solubilization behavior. J Mol Liq. 2019;274:223–238.
  • Zhu JJ, Shen CY, Wang J, et al. Preparation of glycyrrhizic acid F127/TPGS mixed nanomicelles and its in vivo intestinal absorption in rats. Zhongcaoyao. 2020;51(7):1845–1850.
  • Shen C, Yang Y, Shen B, et al. Self-discriminating fluorescent hybrid nanocrystals: efficient and accurate tracking of translocation via oral delivery. Nanoscale. 2017;10(1):436–450.
  • Parisi OI, Ruffo M, Malivindi R, et al. Molecularly imprinted polymers (MIPs) as theranostic systems for sunitinib controlled release and self-monitoring in cancer therapy. Pharmaceutics. 2020;12(1):41.
  • Yamamura Y, Santa T, Kotaki H, et al. Administration-route dependency of absorption of glycyrrhizin in rats: intraperitoneal administration dramatically enhanced bioavailability. Biol Pharm Bull. 1995;18(2):337–341.
  • Shibata N, Shimokawa T, Jiang Z, et al. Characteristics of intestinal absorption and disposition of glycyrrhizin in mice. Biopharm Drug Dispos. 2000;21(3):95–101.
  • Gaucher G, Satturwar P, Jones MC, et al. Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm. 2010;76(2):147–158.
  • Meng X, Liu J, Yu X, et al. Pluronic F127 and d-α-tocopheryl polyethylene glycol succinate (TPGS) mixed micelles for targeting drug delivery across the blood brain barrier. Sci Rep. 2017;7(1):2964.
  • Emami J, Rezazadeh M, Mashayekhi M, et al. A novel mixed polymeric micelle for co-delivery of paclitaxel and retinoic acid and overcoming multidrug resistance: synthesis, characterization, cytotoxicity, and pharmacokinetic evaluation. Drug Dev Ind Pharm. 2018;44(5):729–740.
  • Patra A, Satpathy S, Shenoy AK, et al. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers. Int J Nanomedicine. 2018;13:2869–2881.
  • Butt AM, Mohd Amin MC, Katas H. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs. Int J Nanomedicine. 2015;10:1321–1334.
  • Wu H, Zhong Q, Zhong R, et al. Preparation and antitumor evaluation of self-assembling oleanolic acid-loaded Pluronic P105/d-α-tocopheryl polyethylene glycol succinate mixed micelles for non-small-cell lung cancer treatment. Int J Nanomedicine. 2016;11:6337–6352.
  • Sui X, Wei W, Yang L, et al. Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process. Int J Pharm. 2012;423(2):471–479.
  • Wang Q, Newby BZ. Octadecyltrichlorosilane incorporated alginate micro-granules as sustained-release carriers for small hydrophilic molecules. Curr Drug Deliv. 2020.
  • Hu X, Wang Y, Zhang L, et al. Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of vitamin C. Carbohydr Polym. 2020;234:115920.
  • Jaisankar E, Pavithra ME, Krishna S, et al. Dual property of chitosan blended copolymer membranes: antidiabetic drug release profile and antimicrobial assay. Int J Biol Macromol. 2020;145:42–52.
  • Zeeshan M, Ali H, Khan S, et al. Glycyrrhizic acid-loaded pH-sensitive poly-(lactic-co-glycolic acid) nanoparticles for the amelioration of inflammatory bowel disease. Nanomedicine (Lond). 2019;14(15):1945–1969.
  • Ernsting MJ, Murakami M, Roy A, et al. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release. 2013;172(3):782–794.
  • Wang J, Ma W, Tu P. The mechanism of self-assembled mixed micelles in improving curcumin oral absorption: in vitro and in vivo. Colloids Surf B Biointerfaces. 2015;133:108–119.
  • Ma YH, He HS, Fan WF, et al. In vivo fate of biomimetic mixed micelles as nanocarriers for bioavailability enhancement of lipid–drug conjugates. ACS Biomater Sci Eng. 2017;3(10):2399–2409.
  • Wu F, Li X, Jiang B, et al. Glycyrrhetinic acid functionalized nanoparticles for drug delivery to liver cancer. J Biomed Nanotechnol. 2018;14(11):1837–1852.
  • Cai Y, Xu Y, Chan HF, et al. Glycyrrhetinic acid mediated drug delivery carriers for hepatocellular carcinoma therapy. Mol Pharm. 2016;13(3):699–709.
  • Wang XH, Liu Y, Shen CY, et al. Effect of particle size on in vitro and in vivo behavior of astilbin nanosuspensions. J Drug Deliv Sci Technol. 2019;52:778–783.
  • Wang T, Qi J, Ding N, et al. Tracking translocation of self-discriminating curcumin hybrid nanocrystals following intravenous delivery. Int J Pharm. 2018;546(1–2):10–19.
  • Lee SA, Lee SH, Kim JY, et al. Effects of glycyrrhizin on lipopolysaccharide-induced acute lung injury in a mouse model. J Thorac Dis. 2019;11(4):1287–1302.
  • Kong D, Wang Z, Tian J, et al. Glycyrrhizin inactivates toll-like receptor (TLR) signaling pathway to reduce lipopolysaccharide-induced acute lung injury by inhibiting TLR2. J Cell Physiol. 2019;234(4):4597–4607.
  • Zhao H, Zhao M, Wang Y, et al. Glycyrrhizic acid prevents sepsis-induced acute lung injury and mortality in rats. J Histochem Cytochem. 2016;64(2):125–137.
  • Gao L, Tang H, He H, et al. Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats. Front Pharmacol. 2015;6:215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.