285
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Preparation, statistical optimization, in vitro characterization, and in vivo pharmacological evaluation of solid lipid nanoparticles encapsulating propolis flavonoids: a novel treatment for skin edema

, , ORCID Icon & ORCID Icon
Pages 1163-1176 | Received 26 Feb 2020, Accepted 02 Jun 2020, Published online: 18 Jun 2020

References

  • Pinheiro KS, Ribeiro DR, Alves AVF, et al. Modulatory activity of Brazilian red propolis on chemically induced dermal carcinogenesis. Acta Cir Bras. 2014;29:111–117.
  • Silva-Carvalho R, Baltazar F, Almeida-Aguiar C. Propolis: a complex natural product with a plethora of biological activities that can be explored for drug development. Evid Based Complement Alternat Med. 2015;2015:206439.
  • Castaldo S, Capasso F. Propolis, an old remedy used in modern medicine. Fitoterapia. 2002;73:S1–S6.
  • Yuan J, Lu Y, Abula S, et al. Optimization on preparation condition of propolis flavonoids liposome by response surface methodology and research of its immune enhancement activity. Evid Based Complement Alternat Med. 2013;2013:1–8.
  • Bufalo MC, et al. The immunomodulatory effect of propolis on receptors expression, cytokine production and fungicidal activity of human monocytes. J Pharm Pharmacol. 2014;66:1497–1504.
  • Pineros AR, de Lima MHF, Rodrigues T, et al. Green propolis increases myeloid suppressor cells and CD4+ Foxp3+ cells and reduces Th2 inflammation in the lungs after allergen exposure. J Ethnopharmacol. 2019;252:112496.
  • Wu J, Omene C, Karkoszka J, et al. Caffeic acid phenethyl ester (CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer. Cancer Lett. 2011;308:43–53.
  • Gülçelik NE, Dilara Zeybek F. Anti-tumor activity of propolis on differentiated cancer cell lines. Med Sci. 2012;1:292–300.
  • Yavari B, Mahjub R, Saidijam M, et al. The potential use of peptides in cancer treatment. Curr Protein Pept Sci. 2018;19:759–770.
  • Touzani S, Embaslat W, Imtara H, et al. In vitro evaluation of the potential use of propolis as a multitarget therapeutic product: physicochemical properties, chemical compositions, and immunomodulatory, antibacterial, and anticancer properties. Biomed Res Int. 2019;2019:1–11.
  • Shahinozzaman M, Taira N, Ishii T, et al. Anti-inflammatory, anti-diabetic, and anti-Alzheimer’s effects of prenylated flavonoids from Okinawa propolis: an investigation by experimental and computational studies. Molecules. 2018;23:2479.
  • Aabed K, Bhat RS, Al-Dbass A, et al. Bee pollen and propolis improve neuroinflammation and dysbiosis induced by propionic acid, a short chain fatty acid in a rodent model of autism. Lipids Health Dis. 2019;18:200.
  • Sameni HR, Ramhormozi P, Bandegi AR, et al. Effects of ethanol extract of propolis on histopathological changes and anti-oxidant defense of kidney in a rat model for type 1 diabetes mellitus. J Diabetes Investig. 2016;7:506–513.
  • Zabaiou N, Fouache A, Trousson A, et al. Biological properties of propolis extracts: something new from an ancient product. Chem Phys Lipids. 2017;207:214–222.
  • Oses SM, Marcos P, Azofra P, et al. Phenolic profile, antioxidant capacities and enzymatic inhibitory activities of propolis from different geographical areas: needs for analytical harmonization. Antioxidants. 2020;9:75.
  • Oliveira AV, et al. Anti-bacterial activity of propolis extract from the south of Portugal. Pak J Pharm Sci. 2017;30:1–9.
  • Przybylek I, Karpinski TM. Antibacterial properties of propolis. Molecules. 2019;24:2047.
  • Yildrim A, Duran GG, Duran N, et al. Antiviral activity of Hatay propolis against replication of herpes simplex virus type 1 and type 2. Med Sci Monit. 2016;22:422–430.
  • Silva-Beltran NP, Balderrama-Carmona AP, Umsza-Guez MA, et al. Antiviral effects of Brazilian green and red propolis extracts on Enterovirus surrogates. Environ Sci Pollut Res Int. 2019.
  • Tobaldini-Valerio FK, Bonfim-Mendonça PS, Rosseto HC, et al. Propolis: a potential natural products to fight Candida species infections. Future Microbiol. 2016;11:1035–1046.
  • Silva RP, Machado BAS, Barreto GdA, et al. Antioxidant, antimicrobial, antiparasitic, and cytotoxic properties of various Brazilian propolis extracts. PLoS One. 2017;12:e0172585.
  • El-Deen AN, Mona SZ, Shalaby SI, et al. Propolis, with reference of chemical composition, antiparasitic, antimycotic, antibacterial and antiviral activities: a review. Life Sci J. 2013;10:1308–1312.
  • Kuropatnicki AK, Szliszka E, Krol W. Historical aspects of propolis research in modern times. Evid Based Complement Alternat Med. 2013;2013:964149–964160.
  • González M, Gómez MI, Tereschuk ML, et al. Thermal stability of propolis from Tucumán, Argentina. J Appl Res. 2009;48:270–278.
  • Cushnie TT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005;26:343–356.
  • Bacanli M, Basaran AA, Basaran N. The antioxidant, cytotoxic, and antigenotoxic effects of galangin, puerarin, and ursolic acid in mammalian cells. Drug Chem Toxicol. 2017;40:256–262.
  • Shimoi K, Saka N, Kaji K, et al. Metabolic fate of luteolin and its functional activity at focal site. Biofactors. 2000;12:181–186.
  • Liu D, Chen L, Jiang S, et al. Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method. J Liposome Res. 2014;24:17–26.
  • Vafaei SY, Dinarvand R, Esmaeili M, et al. Controlled-release drug delivery system based on fluocinolone acetonide–cyclodextrin inclusion complex incorporated in multivesicular liposomes. Pharm Dev Technol. 2015;20:775–781.
  • Yadav N, Khatak S, Singh Sara UV, et al. Solid lipid nanoparticles – a review. Int J Appl Pharm. 2013;5:8–18.
  • Muller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–177.
  • Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131–S155.
  • de Melo-Silva IS, Gaspar LMdAC, Rocha AMO, et al. Encapsulation of red propolis in polymer nanoparticles for the destruction of pathogenic biofilms. AAPS PharmSciTech. 2020;21:49.
  • Abdel Raheem IA, Abdul Razek A, Elgendy AA, et al. Design, evaluation and antimicrobial activity of Egyptian propolis-loaded nanoparticles: intrinsic role as a novel and naturally based root canal nanosealer. Int J Nanomedicine. 2019;14:8379–8398.
  • Rafaat H, Naguib YW, Elsayed MMA, et al. Modified spraying technique and response surface methodology for preparation and optimization of propolis liposomes of enhanced anti-proliferative activity against human melanoma cell line A375. Pharmaceutics. 2019;11:E558.
  • Rosseto HC, Toledo LdASd, Francisco LMBd, et al. Nanostructured lipid systems modified with waste material of propolis for wound healing: design, in vitro and in vivo evaluation. Colloids Surf B Biointerfaces. 2017;158:441–452.
  • Borrelli F, Maffia P, Pinto L, et al. Phytochemical compounds involved in the anti-inflammatory effect of propolis extract. Fitoterapia. 2002;73:S53–S63.
  • Popova M, Bankova V, Butovska D, et al. Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochem Anal. 2004;15:235–240.
  • Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71:349–358.
  • Mahjub R, Heidari Shayesteh T, Radmehr M, et al. Preparation and optimization of N-trimethyl-O-carboxymethyl chitosan nanoparticles for delivery of low-molecular-weight heparin. Pharm Dev Technol. 2016;21:14–25.
  • Mahjub R, Radmehr M, Dorkoosh FA, et al. Lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan as a new strategy for oral delivery of insulin: in vitro, ex vivo and in vivo characteristics. Drug Dev Ind Pharm. 2014;40:1645–1659.
  • Yang SC, Lu LF, Cai Y, et al. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release. 1999;59:299–307.
  • Shah M, Pathak K. Development and statistical optimization of solid lipid nanoparticles of simvastatin by using 2(3) full-factorial design. AAPS PharmSciTech. 2010;11:489–496.
  • Sahu AK, Kumar T, Jain V. Formulation optimization of erythromycin solid lipid nanocarrier using response surface methodology. Biomed Res Int. 2014;2014:689391.
  • Shah B, Khunt D, Bhatt H, et al. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: effect on formulation and characterization parameters. Eur J Pharm Biopharm. 2015;78:54–66.
  • Shah KA, Date AA, Joshi MD, et al. Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int J Pharm. 2007;345:163–171.
  • Jafari SM, Assadpoor E, He Y, et al. Re-coalescence of emulsion droplet during high-energy emulsification. Food Hydrocoll. 2008;22:1191–1202.
  • Jain A, Kesharwani P, Garg NK, et al. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf B Biointerfaces. 2015;134:47–58.
  • Souto EB, Müller RH. Cosmetic features and applications of lipid nanoparticles (SLN, NLC). Int J Cosmet Sci. 2008;30:157–165.
  • Sabeti B, Noordin MI, Mohd S, et al. Development and characterization of liposomal doxorubicin hydrochloride with palm oil. Biomed Res Int. 2014;2014:765426.
  • Mahjub R, Dorkoosh FA, Amini M, et al. Preparation, statistical optimization, and in vitro characterization of insulin nanoparticles composed of quaternized aromatic derivatives of chitosan. AAPS PharmSciTech. 2011;12:1407–1419.
  • Ekambaram P, Sathali AA, Priyanka K. Solid lipid nanoparticles: a review. Sci Rev Chem Commun. 2012;2:80–102.
  • Chen J, Wei N, Lopez-Garcia M, et al. Development and evaluation of resveratrol, vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications. Eur J Pharm Biopharm. 2017;117:286–291.
  • Kumar R, Singh A, Sharma K, et al. Preparation, characterization and in vitro cytotoxicity of fenofibrate and nabumetone loaded solid lipid nanoparticles. Mater Sci Eng C Mater Biol Appl. 2020;106:110184.
  • Frerreira M, Barreiros L, Segundo MA, et al. Topical co-delivery of methotrexate and etanercept using lipid nanoparticles: a targeted approach for psoriasis management. Colloids Surf B Biointerfaces. 2017;159:23–29.
  • Wissing SA, Muller RH. Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration. J Control Release. 2002;81:225–233.
  • Montenegro L, Parenti C, Turnaturi R, et al. Resveratrol-loaded lipid nanocarriers: correlation between in vitro occlusion factor and in vivo skin hydrating effect. Pharmaceutics. 2017;9:58.
  • Jose J, Netto G. Role of solid lipid nanoparticles as a photoprotective agents in cosmetics. J Cosmet Dermatol. 2019;18:315–321.
  • Kakadia PG, Conway BR. Solid lipid nanoparticles for targeted delivery of triclosan into skin for infection prevention. J Microencapsul. 2018;35:695–704.
  • Amasya G, Aksu B, Badilli U, et al. QbD guided early pharmaceutical development study: production of lipid nanoparticles by high pressure homogenization for skin cancer treatment. Int J Pharm. 2019;563:110–121.
  • Liu X, Zhao Q. Long-term anesthetic analgesic effects: comparison of tetracaine loaded polymeric nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers in vitro and in vivo. Biomed Pharmacother. 2019;117:109057.
  • Liu J, Hu W, Chen H, et al. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm. 2007;328:191–195.
  • Lowe NJ, Wieder JM, Rosenbach A, et al. Long-term low-dose cyclosporine therapy for severe psoriasis: effects on renal function and structure. J Am Acad Dermatol. 1996;35:710–719.
  • Doktorovova S, Souto EB, Silva AM. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers – a systematic review of in vitro data. Eur J Pharm Biopharm. 2014;87:1–18.
  • Bruge F, Damiani E, Marcheggiani F, et al. A comparative study on the possible cytotoxic effects of different nanostructures lipid carrier compositions in human dermal fibroblasts. Int J Pharm. 2015;495:879–885.
  • Al-Amin M, Cao J, Naeem M, et al. Increased therapeutic efficacy of a newly synthesized tyrosinase inhibitor by solid lipid nanoparticles in the topical treatment of hyperpigmentation. Drug Des Devel Ther. 2016;10:3947–3957.
  • Rigon RB, Gonçalez ML, Severino P, et al. Solid lipid nanoparticles optimized by 22 factorial design for skin administration: cytotoxicity in NIH3T3 fibroblasts. Colloids Surf B Biointerfaces. 2018;171:501–505.
  • Bechinger B, Lohner K. Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta. 2006;1758:1529–1539.
  • Doktorovova S, Kovačević A, García ML, et al. Pre-clinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2016;108:235–252.
  • Tung NT, Vu VD, Nguyen PL. DoE-based development, physicochemical characterization, and pharmacological evaluation of a topical hydrogel containing betamethasone dipropionate microemulsion. Colloids Surf B Biointerfaces. 2019;181:480–488.
  • Bagde A, Patel K, Kutlehria S, et al. Formulation of topical ibuprofen solid lipid nanoparticle (SLN) gel using hot melt extrusion technique (HME) and determining its anti-inflammatory strength. Drug Deliv Transl Res. 2019;9:816–827.
  • Elkomy MH, El Menshawe SF, Eid HM, et al. Development of a nanogel formulation for transdermal delivery of tenoxicam: a pharmacokinetic–pharmacodynamic modeling approach for quantitative prediction of skin absorption. Drug Dev Ind Pharm. 2017;43:531–544.
  • Khurana S, Bedi PM, Jain NK. Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam. Chem Phys Lipids. 2013;175–176:65–72.
  • Shrotriya SN, Ranpise NS, Vidhate BV. Skin targeting of resveratrol utilizing solid lipid nanoparticle-engrossed gel for chemically induced irritant contact dermatitis. Drug Deliv Transl Res. 2017;7:37–52.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.