109
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Development and evaluation of Classical and Pickering emulsions containing crude or fractionated extracts of Libidibia ferrea pods

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1185-1198 | Received 08 Feb 2020, Accepted 04 Jun 2020, Published online: 26 Jun 2020

References

  • Burlando B, Cornara L. Revisiting Amazonian plants for skin care and disease. Cosmetics. 2017;4(3):25.
  • Chaveerach A, Sudmoon R, Tanee T. Interdisciplinary researches for potential developments of drugs and natural products. Asian Pac J Trop Biomed. 2017;7(4):378–384.
  • Palliyage GH, Singh S, Ashby CR Jr., et al. Pharmaceutical topical delivery of poorly soluble polyphenols: potential role in prevention and treatment of melanoma. AAPS PharmSciTech. 2019;20(6):250.
  • Martelli G, Giacomini D. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds. Eur J Med Chem. 2018;158:91–105.
  • Ferreira MRA, Soares L. Libidibia ferrea (Mart. ex Tul.) L. P. Queiroz: a review of the biological activities and phytochemical composition. J Med Plant Res. 2015;9(2):140–150.
  • Guerra A, Soares LAL, Ferreira MRA, et al. Libidibia ferrea presents antiproliferative, apoptotic and antioxidant effects in a colorectal cancer cell line. Biomed Pharmacother. 2017;92:696–706.
  • Falcão TR, Araújo AAd, Soares LAL, et al. Libidibia ferrea fruit crude extract and fractions show anti-inflammatory, antioxidant, and antinociceptive effect in vivo and increase cell viability in vitro. Evid Based Compl Alt. 2019;2019:1–14.
  • Daniels R. Emulsionen. In: Raab W, Kindl U, editors. Pflegekosmetik. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2012.
  • Fahr A. Emulsions. Voigt Pharmazeutische Technologie. Stuttgart: Deutscher Apotheker Verlag; 2015.
  • Ferreira M. Metodologias analíticas e quimiométricas para a avaliação de impressões digitais da droga vegetal e produtos derivados dos frutos de Libidibia ferrea (Mart. ex. Tul.) L.P. Queiroz. Recife, Brazil: Federal University of Pernambuco; 2016.
  • Ferreira MRA, Santiago RR, de Souza TP, et al. Development and evaluation of emulsions from Carapa guianensis (Andiroba) oil. AAPS PharmSciTech. 2010;11(3):1383–1390.
  • Lunter DJ, Daniels R. New film forming emulsions containing Eudragit® NE and/or RS 30D for sustained dermal delivery of nonivamide. Eur J Pharm Biopharm. 2012;82(2):291–298.
  • Borreani J, Espert M, Salvador A, et al. Oil-in-water emulsions stabilised by cellulose ethers: stability, structure and in vitro digestion. Food Funct. 2017;8(4):1547–1557.
  • Li X, Ding L, Zhang Y, et al. Oil-in-water Pickering emulsions from three plant-derived regenerated celluloses. Carbohydr Polym. 2019;207:755–763.
  • Arkoumanis PG, Norton IT, Spyropoulos F. Pickering particle and emulsifier co-stabilised emulsions produced via rotating membrane emulsification. Colloids Surf A. 2019;568:481–492.
  • Yang Y, Fang Z, Chen X, et al. An overview of pickering emulsions: solid-particle materials, classification, morphology, and applications. Front Pharmacol. 2017;8:287.
  • Brazil. Brazilian pharmacopoeia. Brasília: Anvisa; 2017.
  • Lonni AA, Munhoz VM, Lopes GC, et al. Development and characterization of multiple emulsions for controlled release of Trichilia catigua (Catuaba) extract. Pharm Dev Technol. 2016;21(8):933–942.
  • Wollenweber C, Oschmann R, Daniels R. Hypromellose stabilisierte Emulsionen als Träger für homöopathische Urtinkturen. Pharm Ind. 2002;64:81–88.
  • Europe Co. European pharmacopoeia. Strasbourg: Council of Europe; 2001.
  • Ferreira MRA, Fernandes MTM, da Silva WAV, et al. Chromatographic and spectrophotometric analysis of phenolic compounds from fruits of Libidibia ferrea Martius. Pharmacogn Mag. 2016;12(Suppl. 2):S285–S291.
  • Rottke M, Lunter DJ, Daniels R. In vitro studies on release and skin permeation of nonivamide from novel oil-in-oil-emulsions. Eur J Pharm Biopharm. 2014;86(2):260–266.
  • Li W, Leong TSH, Ashokkumar M, et al. A study of the effectiveness and energy efficiency of ultrasonic emulsification. Phys Chem Chem Phys. 2017;20(1):86–96.
  • Schulz MB, Daniels R. Hydroxypropylmethylcellulose (HPMC) as emulsifier for submicron emulsions: influence of molecular weight and substitution type on the droplet size after high-pressure homogenization. Eur J Pharm Biopharm. 2000;49(3):231–236.
  • Rutckeviski R, Xavier FH, Morais A, et al. Therapeutic bullfrog oil-based nanoemulsion for oral application: development, characterization and stability. Acta Pharm. 2019;69(1):33–48.
  • Tadros TF. Emulsion formation and stability. Weinheim (GE): Wiley-VCH Verlag GmbH & Co. KGaA; 2013.
  • Khan BA, Akhtar N, Khan H, et al. Development, characterization and antioxidant activity of polysorbate based O/W emulsion containing polyphenols derived from Hippophae rhamnoides and Cassia fistula. Braz J Pharm Sci. 2013;49(4):763–773.
  • Wagner H. Synergy research: approaching a new generation of phytopharmaceuticals. Fitoterapia. 2011;82(1):34–37.
  • Patel AR, Nijsse J, Velikov KP. Novel polymer–polyphenol beads for encapsulation and microreactor applications. Soft Matter. 2011;7(9):4294–4301.
  • Duffus LJ, Norton JE, Smith P, et al. A comparative study on the capacity of a range of food-grade particles to form stable O/W and W/O Pickering emulsions. J Colloid Interface Sci. 2016;473:9–21.
  • Zhang M, Yang B, Liu W, et al. Influence of hydroxypropyl methylcellulose, methylcellulose, gelatin, poloxamer 407 and poloxamer 188 on the formation and stability of soybean oil-in-water emulsions. Asian J Pharma Sci. 2017;12(6):521–531.
  • Xavier-Júnior FH, Silva KGH, Farias IEG, et al. Prospective study for the development of emulsion systems containing natural oil products. J Drug Deliv Sci Technol. 2012;22(4):367–372.
  • Streck L, Sarmento VH, Machado PR, et al. Phase transitions of isotropic to anisotropic biocompatible lipid-based drug delivery systems overcoming insoluble benznidazole loading. Int J Mol Sci. 2016;17(7):981.
  • Farah MA, Oliveira RC, Caldas JN, et al. Viscosity of water-in-oil emulsions: variation with temperature and water volume fraction. J Pet Sci Eng. 2005;48(3–4):169–184.
  • Gabriele D, Marino R, Giovando S. Effect of tannin addition on the rheological properties of starch-based adhesives. J Appl Rheol. 2014;24:31–40.
  • Morais VVd, Oliveira ARd, Ferreira MRA, et al. Evaluation of hydroxypropylmethylcellulose (HPMC) hydrogel matrix for delivery of triamcinolone. Int J Pharm Sci Res. 2014;5(12):5127–5135.
  • Kitagawa S, Yoshii K, Morita SY, et al. Efficient topical delivery of chlorogenic acid by an oil-in-water microemulsion to protect skin against UV-induced damage. Chem Pharm Bull. 2011;59(6):793–796.
  • Zillich OV, Schweiggert-Weisz U, Eisner P, et al. Polyphenols as active ingredients for cosmetic products. Int J Cosmet Sci. 2015;37(5):455–464.
  • Zillich OV, Schweiggert-Weisz U, Hasenkopf K, et al. Release and in vitro skin permeation of polyphenols from cosmetic emulsions. Int J Cosmet Sci. 2013;35(5):491–501.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.