267
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Antioxidant and antimicrobial activity of red propolis embedded mesoporous silica nanoparticles

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1199-1208 | Received 13 Feb 2020, Accepted 09 Jun 2020, Published online: 01 Jul 2020

References

  • Beck JS, Vartuli JC, Roth WJ, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992;114(27):10834–10843.
  • Slowing II, Vivero-Escoto JL, Trewyn BG, et al. Mesoporous silica nanoparticles: structural design and applications. J Mater Chem. 2010;20(37):7924–7937.
  • Wu S-H, Mou C-Y, Lin H-P. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev. 2013;42(9):3862–3875.
  • Saroj S, Rajput SJ. Tailor-made pH-sensitive polyacrylic acid functionalized mesoporous silica nanoparticles for efficient and controlled delivery of anti-cancer drug etoposide. Drug Dev Ind Pharm. 2018;44(7):1198–1211.
  • Szegedi A, Popova M, Goshev I, et al. Controlled drug release on amine functionalized spherical MCM-41. J Solid State Chem. 2012;194:257–263.
  • Kermannezhad K, Najafi Chermahini A, Momeni MM, et al. Application of amine-functionalized MCM-41 as pH-sensitive nano container for controlled release of 2-mercaptobenzoxazole corrosion inhibitor. Chem Eng J. 2016;306:849–857.
  • Popova M, Szegedi A, Yoncheva K, et al. New method for preparation of delivery systems of poorly soluble drugs on the basis of functionalized mesoporous MCM-41 nanoparticles. Microporous Mesoporous Mater. 2014;198:247–255.
  • Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24(12):1237–1504.
  • Lu J, Liong M, Li Z, et al. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6(16):1794–1805.
  • Zhao L, Qin H, Wu R, et al. Recent advances of mesoporous materials in sample preparation. J Chromatogr A. 2012;1228:193–204.
  • Dubey RS, Rajesh Y, More MA. Synthesis and characterization of SiO2 nanoparticles via sol–gel method for industrial applications. Mater Today Proc. 2015;2(4–5):3575–3579.
  • Yang B, Chen Y, Shi J. Mesoporous silica/organosilica nanoparticles: synthesis, biological effect and biomedical application. Mater Sci Eng R Rep. 2019;137:66–105.
  • Croissant JG, Cattoën X, Man WCM, et al. Syntheses and applications of periodic mesoporous organosilica nanoparticles. Nanoscale. 2015;7(48):20318–20334.
  • Lv X, Zhang L, Xing F, et al. Controlled synthesis of monodispersed mesoporous silica nanoparticles: particle size tuning and formation mechanism investigation. Microporous Mesoporous Mater. 2016;225:238–244.
  • Gan Q, Zhu J, Yuan Y, et al. A dual-delivery system of pH-responsive chitosan-functionalized mesoporous silica nanoparticles bearing BMP-2 and dexamethasone for enhanced bone regeneration. J Mater Chem B. 2015;3(10):2056–2066.
  • Azevedo LF, Da Silva PF, Brandão MP, et al. Polymeric nanoparticle systems loaded with red propolis extract: a comparative study of the encapsulating systems, PCL-Pluronic versus Eudragit®E100-Pluronic. J Apicult Res. 2018;57(2):255–270.
  • Tang L, Cheng J. Nonporous silica nanoparticles for nanomedicine application. Nano Today. 2013;8(3):290–312.
  • Fathi M, Majidi S, Zangabad PS, et al. Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med Res Rev. 2018;38(6):2110–2136.
  • Lee JE, Lee N, Kim T, et al. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res. 2011;44(10):893–902.
  • Solanki P, Patel S, Devkar R, et al. Camptothecin encapsulated into functionalized MCM-41: in vitro release study, cytotoxicity and kinetics. Mater Sci Eng C Mater Biol Appl. 2019;98:1014–1021.
  • Makvandi P, Ghaemy M, Ghadiri AA, et al. Photocurable, antimicrobial quaternary ammonium-modified nanosilica. J Dent Res. 2015;94(10):1401–1407.
  • Lin L, Tang F, Liu H, et al. In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano. 2010;4(11):6874–6882.
  • Croissant JG, Fatieiev Y, Almalik A, et al. Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv Healthcare Mater. 2018;7(4):1700831.
  • Bharti C, Gulati N, Nagaich U, et al. Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig. 2015;5(3):124–133.
  • Simovic S, Ghouchi-Eskandar N, Moom Sinn A, et al. Silica materials in drug delivery applications. Curr Drug Discov Technol. 2011;8(3):269–276.
  • Wang Y, Zhao Q, Han N, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine. 2015;11(2):313–327.
  • Tarn D, Ashley CE, Xue M, et al. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res. 2013;46(3):792–801.
  • Yuan H, Ma Q, Ye L, et al. The traditional medicine and modern medicine from natural products. Molecules. 2016;21(5):559.
  • Arif T, Bhosale JD, Kumar N, et al. Natural products – antifungal agents derived from plants. J Asian Nat Prod Res. 2009;11(7):621–638.
  • Cui PH, Duke CC. Chemical classification and chemistry of phytotherapeutics constituents. In: Ramzan, Iqbal, editor. Phytotherapies: efficacy, safety, and regulation. 1st ed. John Wiley & Sons, Inc; 2015. p. 199–235.
  • Do Nascimento TG, Da Silva PF, Azevedo LF, et al. Polymeric nanoparticles of Brazilian red propolis extract: preparation, characterization, antioxidant and leishmanicidal activity. Nanoscale Res Lett. 2016;11(1):301.
  • Gandhi GR, Barreto PG, Lima BS, et al. Medicinal plants and natural molecules with in vitro and in vivo activity against rotavirus: a systematic review. Phytomedicine. 2016;23(14):1830–1842.
  • Araujo MAR, Libério SA, Guerra RNM, et al. Mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of propolis: a brief review. Rev Bras Farmacogn. 2012;22(1):208–219.
  • Ghisalberti EL. Propolis: a review. Bee World. 1979;60(2):59–84.
  • Bogdanov S. Propolis: composition, health, medicine: a review. Bee Prod Sci. 2017;1:1–44.
  • López BGC, Schmidt EM, Eberlin MN, et al. Phytochemical markers of different types of red propolis. Food Chem. 2014;146:174–180.
  • De Mendonça ICG, Porto I, Do Nascimento TG, et al. Brazilian red propolis: phytochemical screening, antioxidant activity and effect against cancer cells. BMC Complement Altern Med. 2015;15:357.
  • Simone-Finstrom M, Spivak M. Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie. 2010;41(3):295–311.
  • Bankova V. Chemical diversity of propolis and the problem of standardization. J Ethnopharmacol. 2005;100(1–2):114–117.
  • Righi AA, Alves TR, Negri G, et al. Brazilian red propolis: unreported substances, antioxidant and antimicrobial activities. J Sci Food Agric. 2011;91(13):2363–2370.
  • Alencar SM, Oldoni TLC, Castro ML, et al. Chemical composition and biological activity of a new type of Brazilian propolis: red propolis. J Ethnopharmacol. 2007;113(2):278–283.
  • Cabral ISR, Oldoni TLC, Prado A, et al. Composição fenólica, atividade antibacteriana e antioxidante da própolis vermelha brasileira [Phenolic composition, antibacterial and antioxidant activity of Brazilian red propolis]. Quím Nova. 2009;32(6):1523–1527.
  • Devequi-Nunes D, Machado BAS, Barreto GA, et al. Chemical characterization and biological activity of six different extracts of propolis through conventional methods and supercritical extraction. PLoS One. 2018;13(12):e0207676.
  • Freires IA, De Alencar SM, Rosalen PL. A pharmacological perspective on the use of Brazilian red propolis and its isolated compounds against human diseases. Eur J Med Chem. 2016;110:267–279.
  • Rufatto LC, Dos Santos DA, Marinho F, et al. Red propolis: chemical composition and pharmacological activity. Asian Pac J Trop Biomed. 2017;7(7):591–598.
  • Piccinelli AL, Lotti C, Campone L, et al. Cuban and Brazilian red propolis: botanical origin and comparative analysis by high-performance liquid chromatography–photodiode array detection/electrospray ionization tandem mass spectrometry. J Agric Food Chem. 2011;59(12):6484–6491.
  • Silva FRG, Matias TMS, Souza LIO, et al. Phytochemical screening and in vitro antibacterial, antifungal, antioxidant and antitumor activities of the red propolis Alagoas. Braz J Biol. 2019;79(3):452–459.
  • Da Silva SS, Thomé GDS, Cataneo AHD, et al. Brazilian propolis antileishmanial and immunomodulatory effects. Evid Based Complement Altern Med. 2013;2013:1–7.
  • Pavia PL, Lampman GM, Kriz GS, et al. Introduction to spectroscopy. 4th ed. Boston (MA): Cengage Learning; 2013.
  • Oliveira L, Oliveira L, Sonsin AF, et al. Ultrafast diesel oil spill removal by fibers from silk-cotton tree: characterization and sorption potential evaluation. J Clean Prod. 2020;263:1–13.
  • Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 1995;28(1):25–30.
  • Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71–79.
  • Shaw DJ. In: Maar JH, translator. Introduction to colloid and surface chemistry. São Paulo: Edgard Blücher; 1975.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.