258
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Formulation of amorphous ternary solid dispersions of dapagliflozin using PEG 6000 and Poloxamer 188: solid-state characterization, ex vivo study, and molecular simulation assessment

, , , , , , , , , & show all
Pages 1458-1467 | Received 16 Dec 2019, Accepted 21 Jul 2020, Published online: 05 Aug 2020

References

  • Kommavarapu P, Maruthapillai A, Palanisamy K, et al. Preparation and characterization of rilpivirine solid dispersions with the application of enhanced solubility and dissolution rate. Beni-Suef Univ J Basic Appl Sci. 2015;4(1):71–79.
  • Kreidel RN, Duque MD, Serra CHR, et al. Dissolution enhancement and characterization of nimodipine solid dispersions with Poloxamer 407 or PEG 6000. J Dispers Sci Technol. 2012;33(9):1354–1359.
  • Tanaka N, Imai K, Okimoto K, et al. Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine (II): in vivo evaluation. J Control Release. 2006;112(1):51–56.
  • Ameeduzzafar E-BI, Alruwaili NK, et al. Development of novel dapagliflozin loaded solid self-nanoemulsifying oral delivery system: physiochemical characterization and in vivo antidiabetic activity. J Drug Deliv Sci Technol. 2019;54:101279.
  • Komoroski B, Vachharajani N, Boulton D, et al. Dapagliflozin, a novel SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin Pharmacol Ther. 2009;85(5):520–526.
  • Kasichayanula S, Chang M, Hasegawa M, et al. Pharmacokinetics and pharmacodynamics of dapagliflozin, a novel selective inhibitor of sodium-glucose co-transporter type 2, in Japanese subjects without and with type 2 diabetes mellitus. Diabetes Obes Metab. 2011;13(4):357–365.
  • Yang L, Li H, Li H, et al. Pharmacokinetic and pharmacodynamic properties of single- and multiple-dose of dapagliflozin, a selective inhibitor of SGLT2, in healthy Chinese subjects. Clin Ther. 2013;35(8):1211–1222.e2.
  • Khomitskaya Y, Tikhonova N, Gudkov K, et al. Bioequivalence of dapagliflozin/metformin extended-release fixed-combination drug product and single-component dapagliflozin and metformin extended-release tablets in healthy Russian subjects. Clin Ther. 2018;40(4):550–561.
  • Kazi M, Alqahtani AA, Alsaadi BS, et al. UHPLC method development for determining sitagliptin and dapagliflozin in lipid-based self-nanoemulsifying systems as combined dose in commercial products and its application to pharmacokinetic study of dapagliflozin in rats. Pharm Chem J. 2019;53(1):79–87.
  • Angelopoulou A, Voulgari E, Kolokithas-Ntoukas A, et al. Magnetic nanoparticles for the delivery of dapagliflozin to hypoxic tumors: physicochemical characterization and cell studies. AAPS PharmSciTech. 2018;19(2):621–633.
  • Zhang Q, Suntsova L, Chistyachenko YS, et al. Preparation, physicochemical and pharmacological study of curcumin solid dispersion with an arabinogalactan complexation agent. Int J Biol Macromol. 2019;128:158–166.
  • Yousaf AM, Malik UR, Shahzad Y, et al. Silymarin-laden PVP-PEG polymeric composite for enhanced aqueous solubility and dissolution rate: preparation and in vitro characterization. J Pharm Anal. 2019;9(1):34–39.
  • Alshehri S, Shakeel F, Ibrahim M, et al. Influence of microwave technology on solid dispersions of mefenamic acid and flufenamic acid. PLoS One. 2017;12(7):E0182011.
  • Alshehri S, Imam SS, Altamimi MA, et al. Enhanced dissolution of luteolin by solid dispersion prepared by different methods: physicochemical characterization and antioxidant activity. ACS Omega. 2020;5(12):6461–6471.
  • Bajracharya R, Lee SH, Song JG, et al. Development of a ternary solid dispersion formulation of LW6 to improve the in vivo activity as a BCRP inhibitor: preparation and in vitro/in vivo characterization. Pharmaceutics. 2019;11(5):206.
  • Alonzo DE, Zhang GGZ, Zhou D, et al. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27(4):608–618.
  • Colombo M, de Lima Melchiades G, Michels LR, et al. Solid dispersion of kaempferol: formulation development, characterization, and oral bioavailability assessment. AAPS PharmSciTech. 2019;20(3):106.
  • Medarevic DP, Kachrimanis K, Mitric M, et al. Dissolution rate enhancement and physicochemical characterization of carbamazepine–poloxamer solid dispersions. Pharm Dev Technol. 2016;21(3):268–276.
  • Moloughney JG, Weisleder N. Poloxamer 188 (p188) as a membrane resealing reagent in biomedical applications. Recent Pat Biotechnol. 2012;6(3):200–211.
  • Moneghini M, Zingone G, Zordi ND. Influence of microwave technology on the physical–chemical properties of solid dispersion with nimesulide. Powder Technol. 2009;195(3):259–263.
  • Wang W, Zhao C, Sun J, et al. Quantitative measurement of energy utilization efficiency and study of influence factors in typical microwave heating process. Energy. 2015;87:678–685.
  • Alshehri SM, Shakeel F, Ibrahim MA, et al. Dissolution and bioavailability improvement of bioactive apigenin using solid dispersions prepared by different techniques. Saudi Pharm J. 2019;27(2):264–273.
  • Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–133.
  • Alshehri S, Imam SS, Altamimi MA, et al. Stimulatory effects of Soluplus® on flufenamic acid β-cyclodextrin supramolecular complex: physicochemical characterization and pre-clinical anti-inflammatory assessment. AAPS PharmSciTech. 2020;21:145.
  • Melian ME, Munguia AB, Faccio R, et al. The impact of solid dispersion on formulation, using confocal micro Raman spectroscopy as tool to probe distribution of components. J Pharm Innov. 2018;13(1):58–68.
  • Khan N, Ameeduzzafar , Khanna K, et al. Chitosan coated PLGA nanoparticles amplify the ocular hypotensive effect of forskolin: statistical design, characterization and in vivo studies. Int J Biol Macromol. 2018;116:648–663.
  • Alshehri S, Imam SS, Altamimi MA, et al. Host–guest complex of β-cyclodextrin and pluronic F127 with luteolin: physicochemical characterization, anti-oxidant activity and molecular modeling studies. J Drug Deliv Sci Technol. 2020;55:101356.
  • Chaud M, Tamascia P, de Lima AC, et al. Solid dispersions with hydrogenated castor oil increase solubility, dissolution rate and intestinal absorption of praziquantel. Braz J Pharm Sci. 2010;46(3):473–481.
  • Ameeduzzafar, El-Bagory I, Alruwaili NK,  et. al. Quality by design (QbD) based development and validation of bioanalytical RP-HPLC method for dapagliflozin: forced degradation and preclinical pharmacokinetic study. J Liq Chromatogr Relat Technol. 2020;43(1–2):53–65.
  • ICH Topic Q 1 A (R2). Stability testing of new drug substances and products. CPMP/ICH/2736/99; 2003.
  • Kanaujia P, Lau G, Kiong W, et al. Investigating the effect of moisture protection on solid-state stability and dissolution of fenofibrate and ketoconazole solid dispersions using PXRD, HSDSC and Raman microscopy. Drug Dev Ind Pharm. 2011;37(9):1026–1035.
  • Maniruzzaman M, Pang J, Morgan DJ, et al. Molecular modeling as a predictive tool for the development of solid dispersions. Mol Pharm. 2015;12(4):1040–1049.
  • Brunsteiner M, Khinast J, Paudel A. Relative contributions of solubility and mobility to the stability of amorphous solid dispersions of poorly soluble drugs: a molecular dynamics simulation study. Pharmaceutics. 2018;10(3):101.
  • Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18(15):2714–2723.
  • Morris GM, Huey R, Lindstrom W. Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;16:2785–2791.
  • Shi NQ, Lai HW, Zhang Y, et al. On the inherent properties of Soluplus and its application in ibuprofen solid dispersions generated by microwave-quench cooling technology. Pharm Dev Technol. 2018;23(6):573–586.
  • El-Badry M, Fetih G, Fathy M. Improvement of solubility and dissolution rate of indomethacin by solid dispersions in Gelucire 50/13 and PEG4000. Saudi Pharm J. 2009;17(3):217–225.
  • Yadav PS, Kumar V, Singh UP, et al. Physicochemical characterization and in vitro dissolution studies of solid dispersions of ketoprofen with PVP K30 and d-mannitol. Saudi Pharm J. 2013;21(1):77–84.
  • Bikiaris DN. Solid dispersions, part I: recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv. 2011;8(11):1501–1519.
  • Shazly GA, Ibrahim MA, Badran MM, et al. Utilizing pluronic F127 and gelucire 50/13 solid dispersions for enhanced skin delivery of flufenamic acid. Drug Dev Res. 2012;73(6):299–307.
  • Shah RB, Tawakkul MA, Khan MA. Comparative evaluation of flow for pharmaceutical powders and granules. AAPS PharmSciTech. 2008;9(1):250–258.
  • Lebrun P, Krier F, Mantanus J, et al. Design space approach in the optimization of the spray-drying process. Eur J Pharm Biopharm. 2012;80(1):226–234.
  • Deng JH, Lu TB, Sun CC, et al. Dapagliflozin-citric acid cocrystal showing better solid state properties than dapagliflozin. Eur J Pharm Sci. 2017;104:255–261.
  • Pedreiro LN, Cury BSF, Chaud MV, et al. A novel approach in mucoadhesive drug delivery system to improve zidovudine intestinal permeability. Braz J Pharm Sci. 2016;52(4):715–726.
  • Pawar JN, Shete RT, Kundaikar H, et al. Development of amorphous dispersions of artemether with hydrophilic polymers via spray drying: physicochemical and in silico studies. Asian J Pharm Sci. 2016;11(3):385–395.
  • Damian F, Blaton N, Kinget R, et al. Physical stability of solid dispersions of the antiviral agent UC-781 with PEG 6000, Gelucire®44/14 and PVP K30. Int J Pharm. 2002;244(1–2):87–98.
  • Yamashita K, Nakate T, Okimoto K, et al. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int J Pharm. 2003;267(1–2):79–91.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.