202
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Development of natural polymeric microcapsules for antimicrobial drug delivery: triclosan loaded chitosan and alginate-based microcapsules

, , , , , & show all
Pages 1477-1486 | Received 29 Jan 2020, Accepted 02 Aug 2020, Published online: 21 Aug 2020

References

  • Cheng SY, Yuen CWMC, Kan W, et al. Development of cosmetic textiles using microencapsulation technology. Textile Apparel. 2008;12:41–45.
  • Lam PL, Wong RSM, Yuen MCW, et al. Biomedical textiles with therapeutic effects: development of berberine containing chitosan microcapsules. Minerva Biotechnol. 2012;24:62–69.
  • Lam PL, Gambari R. Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries. J Control Release. 2014;178:25–45.
  • Sun X, Cameron RG, Bai J. Microencapsulation and antimicrobial activity of carvacrol in a pectin-alginate matrix. Food Hydrocoll. 2019;92:69–73.
  • Taofiq O, Heleno SA, Calhelha RC, et al. Mushroom-based cosmeceutical ingredientes: microencapsulation and in vitro release profile. Ind Crops Prod. 2018;124:44–52.
  • Mitchell A, Spencer M, Edmiston C. Jr Role of healthcare apparel and other healthcare textiles in the transmission of pathogens: a review of the literature. J Hosp Infect. 2015;90:285–292.
  • Miraftab M. High performance medical textiles: an overview. In: Lawrence CA, editor. High performance medical textiles and their applications. Cambridge: Woodhead Publishing; 2014. p. 437.
  • Verlee A, Mincke S, Stevens CV. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym. 2017;164:268–283.
  • Jun C, Jin L, Changgao W, et al. Parametric optimization of extracellular chitin deacetylase production by Scopulariopsis brevicaulis. Biocatal Biotransformation. 2013;2:1–5.
  • Elgadir MA, Uddin MS, Ferdosh S, et al. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J Food Drug Anal. 2015;23:619–629.
  • LogithKumar R, KeshavNarayan A, Dhivya S, et al. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym. 2016;151:172–188.
  • Allan G, Altman LC, Bensinger RE, et al. Biomedical applications of chitin and chitosan. In: Zikakis JP, editor. Chitin, chitosan and related enzymes. New York: Academic Press; 1984. p. 119–133.
  • Badawy MEI, Rabea EI, Rogge TM, et al. Synthesis and fungicidal activity of new N,O-acyl chitosan derivatives. Biomacromolecules. 2004;5:589–595.
  • Balakrishnan B, Mohanty M, Umashankar PR, et al. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials. 2005;26:6335–6342.
  • Howling GI, Dettmar PW, Goddard PQ, et al. The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials. 2001;22:2959–2966.
  • Sakwanichol J, Sungthongjeen S, Puttipipatkhachorn S. Preparation and characterization of chitosan aqueous dispersion as a pharmaceutical film forming material. J Drug Deliv Sci Tec. 2019; 54:101–230.
  • Dekamin MG, Peyman SZ, Karimi Z, et al. Sodium alginate: an efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. Int J Biol Macromol. 2016;87:172–179.
  • Goh CH, Heng PWS, Chan LW. Alginate as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr Polym. 2012;88:1–12.
  • Hernández-González AC, Téllez-Jurado L, Rodríguez-Lorenzo LM. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: a review. Carbohydr Polym. 2020;229:115514.
  • Dayan AD. Risk assessment of triclosan [Irgasan] in human breast milk. Food Chem Toxicol. 2007;45:125–129.
  • Ishibashi H, Matsumura N, Hirano M, et al. Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat Toxicol. 2004;67:167–179.
  • Louis GW, Hallinger SR, Stoker TE. The effect of triclosan on the uterotrophic response to extended doses of ethinyl estradiol in the weanling rat. Reprod Toxicol. 2013;36:71–77.
  • Heath RJ, Li J, Roland GE, et al. Inhibition of the Staphylococcus aureus NADPH-dependent enoyl-acyl carrier protein reductase by triclosan and hexachlorophene. J Biol Chem. 2000;275:4654–4659.
  • Elisseeff J. Hydrogels: structure starts to gel. Nat Mater. 2008;7:271–273.
  • Rafi AA, Mahkam M. Preparation of magnetic pH-sensitive microcapsules with alginate base as colon specific drug delivery system through an entirely green route. RSC Adv. 2015;5:4628–4638.
  • Jeddi MK, Mahkam M. Magnetic nano carboxymethyl cellulose-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery. Int J Biol Macromol. 2019;135:829–838.
  • Hui PCL, Wang WY, Kan CW, et al. Microencapsulation of traditional Chinese herbs – PentaHerbs extracts and potential application in healthcare textiles. Colloids Surf B Biointerfaces. 2013;111:156–161.
  • Chang JJ, Lee YH, Wu MH, et al. Preparation of electronspun alginate fibers with chitosan sheath. Carbohydr Polym. 2012;87:2357–2361.
  • Román LE, Maurtua D, Paraguay-Delgado F, et al. Green synthesis of ZnO2 nanoparticles and their annealing transformation into ZnO nanoparticles: characterization and antimicrobial activity. J Nanosci Nanotechnol. 2016;16:9889–9895.
  • Li J, Peng J, Zhang Y, et al. Removal of triclosan via peroxidases-mediated reactions in water: reaction kinetics, products and detoxification. J Hazard Mater. 2016;310:152–160.
  • De Britto D, Campana-Filho SP. A kinetic study on the thermal degradation of N, N,N-trimethylchitosan. Polym Degrad Stab. 2004;84:353–361.
  • Corazzari I, Nistic R, Turci F, et al. Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: thermal degradation and water adsorption capacity. Polym Degrad and Stab. 2015;112:1–9.
  • Hua S, Ma H, Li X, et al. pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. Int J Biol Macromol. 2010;46:517–523.
  • Islam MS, Karim MR. Fabrication and characterization of poly(vinyl alcohol)/alginate blend nanofibers by electrospinning method. Colloids Surf A Physicochem Eng Asp. 2010;366:135–140.
  • Celebioglu A, Umu OCO, Tekinay T, et al. Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes. Colloids Surf B Biointerfaces. 2014;116:612–619.
  • Zhang H, Zeng X, Xie J, et al. Study on the sorption process of triclosan on cationic microfibrillated cellulose and its antibacterial activity. Carbohydr Polym. 2016;136:493–498.
  • Dean JA. Lang’s handbook of chemistry. 15th ed. New York: McGraw-Hill; 1999.
  • Allinger NL, Cava MP, Jongh DC, et al. Organic chemistry. 2nd ed. New York: Worth Publications; 1976.
  • Liu M, Zhou Y, Zhang Y, et al. Physicochemical, mechanical and thermal properties of chitosan films with and without sorbitol. Int J Biol Macromol. 2014;70:340–346.
  • Borba PAA, Pinotti M, Campos CEM, et al. Sodium alginate as a potential carrier in solid dispersion formulations to enhance dissolution rate and apparent water solubility of BCS II drugs. Carbohydr Polym. 2016;137:350–359.
  • Liu K, Chen L, Huang L, et al. Enhancing antibacterium and strength of cellulosic paper by coating triclosan-loaded nanofibrillated cellulose (NFC). Carbohydr Polym. 2015;117:996–1001.
  • Furuya DC, Costa AS, Oliveira RC, et al. Fibers obtained from alginate, chitosan and hybrid used in the development of scaffolds. Mat Res. 2017;20:377–386.
  • Mandigan MT, Martinko JM, Stahl DA, et al. Brock biology of microorganisms. 13th ed. San Francisco (CA): Benjamin Cummings Publishing Company; 2010.
  • Howse GL, Bovill RA, Stephens PJ, et al. Synthesis and antibacterial profiles of targeted triclosan derivatives. Eur J Med Chem. 2019;162:51–58.
  • Maestrelli F, Mura P, Alonso JM. Formulation and characterization of triclosan sub-micron emulsions and nanocapsules. J Microencapsul. 2004;21:857–864.
  • Su Y, Zhao L, Meng F, et al. Triclosan loaded polyurethane micelles with pH and lipase sensitive properties for antibacterial applications and treatment of biofilms. Mater Sci Eng C Mater Biol Appl. 2018;93:921–930.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.