753
Views
17
CrossRef citations to date
0
Altmetric
Review Article

Pharmaceutical cocrystal: a game changing approach for the administration of old drugs in new crystalline form

&
Pages 1559-1568 | Received 08 May 2020, Accepted 27 Jul 2020, Published online: 03 Sep 2020

References

  • Kavanagh ON, Croker DM, Walker GM, et al. Pharmaceutical cocrystals: from serendipity to design to application. Drug Discov Today. 2019;24(3):796–804.
  • Yousef MAE, Vangala VR. Pharmaceutical cocrystals: molecules, crystals, formulations, medicines. Cryst Growth Des. 2019;19(12):7420–7438.
  • Panzade PS, Shendarkar GR. Pharmaceutical cocrystal: an antique and multifaceted approach. Curr Drug Deliv. 2017;14(8):1097–1105.
  • Rodriguez-Aller M, Guillarme D, Veuthey JL, et al. Strategies for formulating and delivering poorly water-soluble drugs. J Drug Deliv Sci Technol. 2015;30:342–351.
  • Horstman EM, Bertke JA, Kim EH, et al. Crystallization and characterization of cocrystals of piroxicam and 2,5-dihydroxybenzoic acid. CrystEngComm. 2015;17(28):5299–5306.
  • Stoler E, Warner JC. Non-covalent derivatives: cocrystals and eutectics. Molecules. 2015;20(8):14833–14848.
  • El-Gizawy SA, Osman MA, Arafa MF, et al. Aerosil as a novel co-crystal co-former for improving the dissolution rate of hydrochlorothiazide. Int J Pharm. 2015;478(2):773–778.
  • Shaikh R, Singh R, Walker GM, et al. Pharmaceutical cocrystal drug products: an outlook on product development. Trends Pharmacol Sci. 2018;39(12):1033–1048.
  • Sai Gouthami K, Kumar D, Thipparaboina R, et al. Can crystal engineering be as beneficial as micronisation and overcome its pitfalls? A case study with cilostazol. Int J Pharm. 2015;491(1–2):26–34.
  • Serrano DR, Persoons TD, Arcy DM, et al. Modelling and shadowgraph imaging of cocrystal dissolution and assessment of in vitro antimicrobial activity for sulfadimidine/4-aminosalicylic acid cocrystals. Eur J Pharm Sci. 2016;89:125–136.
  • Ullah M, Hussain I, Sun CC. The development of carbamazepine-succinic acid cocrystal tablet formulations with improved in vitro and in vivo performance. Drug Dev Ind Pharm. 2016;42(6):969–976.
  • US Food and Drug Administration. Guidance for Industry: Regulatory Classification of Pharmaceutical Co-crystals. [cited 2020 Apr 10]. Available from: https://www.fda.gov/media/81824/download
  • Thakuria R, Delori A, Jones W, et al. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453(1):101–125.
  • Samsodien H, Bapoo M, Doms T, et al. FTIR, dissolution and anti-viral activity of nevirapine co-crystals. Pharm Anal Acta. 2017;8(9):1000561.
  • Marques MRC, Choo Q, Ashtikar M, et al. Nanomedicines – tiny particles and big challenges. Adv Drug Deliv Rev. 2019;151–152:23–43.
  • Baghel S, Cathcart H, O'Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016;105(9):2527–2544.
  • Kuminek G, Cao F, Bahia de Oliveira da Rocha A, et al. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Adv Drug Deliv Rev. 2016;101:143–166.
  • Babu NJ, Sanphui P, Nangia A. Crystal engineering of stable temozolomide cocrystals. Chem Asian J. 2012;7(10):2274–2285.
  • Kale DP, Zode SS, Bansal AK. Challenges in translational development of pharmaceutical cocrystals. J Pharm Sci. 2017;106(2):457–470.
  • Vemuri VD, Lankalapalli S. Insight into concept and progress on pharmaceutical co-crystals: an overview. Indian J Pharm Educ Res. 2019;53(4s):s522–s538.
  • Salas-Zúñiga R, Rodríguez-Ruiz C, Höpfl H, et al. Dissolution advantage of nitazoxanide cocrystals in the presence of cellulosic polymers. Pharmaceutics. 2019;12(1):23.
  • Dai XL, Chen JM, Lu TB. Pharmaceutical cocrystallization: an effective approach to modulate the physicochemical properties of solid-state drugs. CrystEngComm. 2018;20(36):5292–5316.
  • Dos Santos JAB, Chaves Júnior JV, de Araújo Batista RS, et al. Preparation, physicochemical characterization and solubility evaluation of pharmaceutical cocrystals of cinnamic acid. J Therm Anal Calorim. 2020.DOI:10.1007/s10973-020-09708-6
  • Kumar S, Nanda A. Approaches to design of pharmaceutical cocrystals: a review. Mol Cryst Liq Cryst. 2018;667(1):54–77.
  • Sanjay A, Manohar D, Bhanudas S. Pharmaceutical cocrystallization: a review. J Adv Pharm Educ Res. 2014;4(4):388–396.
  • Perlovich GL, Manin AN. Design of pharmaceutical cocrystals for drug solubility improvement. Russ J Gen Chem. 2014;84(2):407–414.
  • Najar AA, Azim Y. Pharmaceutical co-crystals: a new paradigm of crystal engineering. J Indian Inst Sci. 2014;94(1):45–67.
  • Karimi-Jafari M, Padrela L, Walker GM, et al. Creating cocrystals: a review of pharmaceutical cocrystal preparation routes and applications. Cryst Growth Des. 2018;18(10):6370–6387.
  • Zhou J, Li L, Zhang H, et al. Crystal structures, dissolution and pharmacokinetic study on a novel phosphodiesterase-4 inhibitor chlorbipram cocrystals. Int J Pharm. 2020;576:118984.
  • Merah A, Abidi A, Chaffai N, et al. Role of hydroxypropylmethylcellulose (HPMC 4000) in the protection of the polymorphs of Piroxicam extended release tablets. Arab J Chem. 2017;10:S1243–S1253.
  • Koide T, Takeuchi Y, Otaki T, et al. Quantification of a cocrystal and its dissociated compounds in solid dosage form using transmission Raman spectroscopy. J Pharm Biomed Anal. 2020;177:112886.
  • Walsh D, Serrano DR, Worku ZA, et al. Engineering of pharmaceutical cocrystals in an excipient matrix: spray drying versus hot melt extrusion. Int J Pharm. 2018;551(1–2):241–256.
  • Ren S, Liu M, Hong C, et al. The effects of pH, surfactant, ion concentration, coformer, and molecular arrangement on the solubility behavior of myricetin cocrystals. Acta Pharm Sin B. 2019;9(1):59–73.
  • Bhardwaj S, Lipert M, Bak A. Mitigating cocrystal physical stability liabilities in preclinical formulations. J Pharm Sci. 2017;106(1):31–38.
  • Almansa C, Frampton CS, Vela JM, et al. Co-crystals as a new approach to multimodal analgesia and the treatment of pain. J Pain Res. 2019;12:2679–2689.
  • Panzade P, Shendarkar G, Shaikh S, et al. Pharmaceutical cocrystal of piroxicam: design, formulation and evaluation. Adv Pharm Bull. 2017;7(3):399–408.
  • Panzade P, Shendarkar G. Design and preparation of zaltoprofen-nicotinamide pharmaceutical cocrystals via liquid assisted grinding method. Turk J Pharm Sci. 2019;53(4):669–676.
  • Daurio D, Medina C, Saw R, et al. Application of twin screw extrusion in the manufacture of cocrystals. Part I: four case studies. Pharmaceutics. 2011;3(3):582–600.
  • Rehder S, Peter N, Christensen A, et al. High-shear granulation as a manufacturing method for cocrystal granules. Eur J Pharm Biopharm. 2013;85(3 Pt B):1019–1030.
  • Chow SF, Chen M, Shi L, et al. Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide. Pharm Res. 2012;29(7):1854–1865.
  • Holaň J, Ridvan L, Billot P, et al. Design of co-crystallization processes with regard to particle size distribution. Chem Eng Sci. 2015;128:36–43.
  • Kudo S, Takiyama H. Production method of carbamazepine/saccharin cocrystal particles by using two solution mixing based on the ternary phase diagram. J Cryst Growth. 2014;392:87–91.
  • Zhang S, Rasmuson ÅC. Thermodynamics and crystallization of the theophylline–glutaric acid cocrystal. Cryst. Growth Des. 2013;13(3):1153–1161.
  • Padrela L, Rodrigues MA, Velaga SP, et al. Formation of indomethacin-saccharin cocrystals using supercritical fluid technology. Eur J Pharm Sci. 2009;38(1):9–17.
  • Müllers KC, Paisana M, Wahl MA. Simultaneous formation and micronization of pharmaceutical cocrystals by rapid expansion of supercritical solutions (RESS). Pharm Res. 2015;32(2):702–713.
  • Neurohr C, Revelli AL, Billot P, et al. Naproxen-nicotinamide cocrystals produced by CO2 antisolvent. J Supercrit Fluids. 2013;83:78–85.
  • Tiago JM, Padrela L, Rodrigues MA, et al. Single-step co-crystallization and lipid dispersion by supercritical enhanced atomization. Cryst Growth Des. 2013;13(11):4940–4947.
  • Bolla G, Nangia A. Pharmaceutical cocrystals: walking the talk. Chem Commun (Camb). 2016;52(54):8342–8360.
  • Moradiya HG, Islam MT, Halsey S, et al. Continuous cocrystallisation of carbamazepine and trans-cinnamic acid via melt extrusion processing. CrystEngComm. 2014;16(17):3573–3583.
  • Fernandes GJ, Rathnanand M, Kulkarni V. Mechanochemical synthesis of carvedilol cocrystals utilizing hot melt extrusion technology. J Pharm Innov. 2019;14(4):373–381.
  • Srinivasan P. Investigation of theophylline nicotinamide pharmaceutical co-crystals utilizing hot melt extrusion; 2019. Electronic Theses and Dissertations. 1682. https://egrove.olemiss.edu/etd/1682
  • Douroumis D, Ross SA, Nokhodchi A. Advanced methodologies for cocrystal synthesis. Adv Drug Deliv Rev. 2017;117:78–95.
  • Patil H, Tiwari RV, Repka MA. Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech. 2016;17(1):20–42.
  • Gajda M, Nartowski KP, Pluta J, et al. Continuous, one-step synthesis of pharmaceutical cocrystals via hot melt extrusion from neat to matrix-assisted processing – state of the art. Int J Pharm. 2019;558:426–440.
  • Paradkar A, Dhumal RS, Kelly AL, et al. Cocrystallization and simultaneous agglomeration using hot melt extrusion. Pharm Res. 2010;27(12):2725–2733.
  • Gajda M, Nartowski KP, Pluta J, et al. The role of the polymer matrix in solvent-free hot melt extrusion continuous process for mechanochemical synthesis of pharmaceutical cocrystal. Eur J Pharm Biopharm. 2018;131:48–59.
  • Gajda M, Nartowski KP, Pluta J, et al. Tuning the cocrystal yield in matrix-assisted cocrystallisation via hot melt extrusion: a case of theophylline-nicotinamide cocrystal. Int J Pharm. 2019;569:118579.
  • Aher S, Dhumal R, Mahadik K, et al. Effect of cocrystallization techniques on compressional properties of caffeine/oxalic acid 2:1 cocrystal. Pharm Dev Technol. 2013;18(1):55–60.
  • Pindelska E, Sokal A, Kolodziejski W. Pharmaceutical cocrystals, salts and polymorphs: advanced characterization techniques. Adv Drug Deliv Rev. 2017;117:111–146.
  • Cerreia Vioglio P, Chierotti MR, Gobetto R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv Drug Deliv Rev. 2017;117:86–110.
  • Izutsu K, Koide T, Takata N, et al. Characterization and quality control of pharmaceutical cocrystals. Chem Pharm Bull. 2016;64(10):1421–1430.
  • Peltonen L. Practical guidelines for the characterization and quality control of pure drug nanoparticles and nano-cocrystals in the pharmaceutical industry. Adv Drug Deliv Rev. 2018;131:101–115.
  • Aitipamula S, Banerjee R, Bansal AK, et al. Polymorphs, salts, and cocrystals: what’s in a name? Crystal Growth Des. 2012;12(5):2147–2152.
  • Lu J. Crystallization and transformation of pharmaceutical solid forms. Afr J Pharm Pharmacol. 2012;6(9):581–591.
  • Ali HRH, Alhalaweh A, Velaga SP. Vibrational spectroscopic investigation of polymorphs and cocrystals of indomethacin. Drug Dev Ind Pharm. 2013;39(5):625–634.
  • Tiţa B, Marian E, Fuliaş A, et al. Thermal stability of piroxicam. Part 2. Kinetic study of the active substance under isothermal conditions. J Therm Anal Calorim. 2013;112(1):367–374.
  • Silva Filho SF, Pereira AC, Sarraguça JMG, et al. Synthesis of a glibenclamide cocrystal: full spectroscopic and thermal characterization. J Pharm Sci. 2018;107(6):1597–1604.
  • Fernandes RP, do Nascimento ALCS, Carvalho ACS, et al. Mechanochemical synthesis, characterization, and thermal behavior of meloxicam cocrystals with salicylic acid, fumaric acid, and malic acid. J Therm Anal Calorim. 2019;138(1):765–777.
  • Dayo Owoyemi BC, Da Silva CCP, Souza MS, et al. Synthesis and structural characterization of four new pharmaceutical cocrystal forms. Cryst Growth Des. 2019;19(2):648–657.
  • Silva C, Souza MS, Dayo Owoyemi BC, et al. Fluconazole: synthesis and structural characterization of four new pharmaceutical cocrystal forms. ACS Publ. 2019;19(2):648–657.
  • Arabiani MR, Lodagekar A, Yadav B, et al. Mechanochemical synthesis of brexpiprazole cocrystals to improve its pharmaceutical attributes. CrystEngComm. 2019;21(5):800–906.
  • Mashhadi SMA, Yufit D, Liu H, et al. Synthesis and structural characterization of cocrystals of isoniazid and cinnamic acid derivatives. J Mol Struct. 2020;1219:128621.
  • Maddileti D, Jayabun SK, Nangia A. Soluble cocrystals of the xanthine oxidase inhibitor febuxostat. Cryst Growth Des. 2013;13(7):3188–3196.
  • Latha MM, Novena LM, Athimoolam S, et al. Single crystal XRD, Hirshfeld surface, vibrational and thermal studies on a new zwitterionic co-crystal of vitaminB3 (nicotinic acid). J Mol Struct. 2020;1205:127578.
  • Padrela L, De Azevedo EG, Velaga SP. Powder X-ray diffraction method for the quantification of cocrystals in the crystallization mixture. Drug Dev Ind Pharm. 2012;38(8):923–929.
  • Butreddy A, Sarabu S, Bandari S, et al. Polymer-assisted aripiprazole − adipic acid cocrystals produced by hot melt extrusion techniques. Cryst Growth Des. 2020;20: 4335–4345.
  • Sopyan I, Fudholi A, Muchtaridi M, et al. Simvastatin-nicotinamide co-crystal: design, preparation and preliminary characterization. Trop J Pharm Res. 2017;16(2):297–303.
  • Seo JW, Hwang KM, Lee SH, et al. Preparation and characterization of adefovir dipivoxil-stearic acid cocrystal with enhanced physicochemical properties. Pharm Dev Technol. 2018;23(9):890–899.
  • Nijhawan M, Santhosh A, Babu PRS, et al. Solid state manipulation of lornoxicam for cocrystals—physicochemical characterization. Drug Dev Ind Pharm. 2014;40(9):1163–1172.
  • Gadade DD, Pekamwar SS. Pharmaceutical cocrystals: regulatory and strategic aspects, design and development. Adv Pharm Bull. 2016;6(4):479–494.
  • Shete AS, Yadav AV, Murthy MS. Evaluation of performance of co crystals of mefloquine hydrochloride in tablet dosage form. Drug Dev Ind Pharm. 2013;39(5):716–723.
  • Kim S, Li Z, Tseng YC, et al. Development and characterization of a cocrystal as a viable solid form for an active pharmaceutical ingredient. Org Process Res Dev. 2013;17(3):540–548.
  • Modi SR, Dantuluri AKR, Puri V, et al. Impact of crystal habit on biopharmaceutical performance of celecoxib. Cryst Growth Des. 2013;13(7):2824–2832.
  • Smith AJ, Kavuru P, Wojtas L, et al. Cocrystals of quercetin with improved solubility and oral bioavailability. Mol Pharm. 2011;8(5):1867–1876.
  • Titapiwatanakun V, Basit AW, Gaisford S. A new method for producing pharmaceutical co-crystals: laser irradiation of powder blends. Cryst Growth Des. 2016;16(6):3307–3312.
  • Urbanus J, Roelands CM, Mazurek J, et al. Electrochemically induced co-crystallization for product removal. CrystEngComm. 2011;13(8):2817–2819.
  • Ende DJ, Anderson SR, Salan JS. Development and scale-up of cocrystals using resonant acoustic mixing. Org Process Res Dev. 2014;18(2):331–341.
  • Patil SP, Modi SR, Bansal AK. Generation of 1:1 carbamazepine:nicotinamide cocrystals by spray drying. Eur J Pharm Sci. 2014;62:251–257.
  • Eddleston MD, Patel B, Day GM, et al. Cocrystallization by freeze-drying: preparation of novel multicomponent crystal forms. Cryst Growth Des. 2013;13(10):4599–4606.
  • Karashima M, Sano N, Yamamoto S, et al. Enhanced pulmonary absorption of poorly soluble itraconazole by micronized cocrystal dry powder formulations. Eur J Pharm Biopharm. 2017;115:65–72.
  • Martin F, Pop M, Kacso I, et al. Ketoconazole-p-aminobenzoic acid cocrystal: revival of an old drug by crystal engineering. Mol Pharm. 2020;17(3):919–932.
  • Kimoto K, Yamamoto M, Karashima M, et al. Pharmaceutical cocrystal development of TAK-020 with enhanced oral absorption. Crystals. 2020;10(3):211.
  • He H, Zhang Q, Wang JR, et al. Structure, physicochemical properties and pharmacokinetics of resveratrol and piperine cocrystals. CrystEngComm. 2017;19(41):6154–6163.
  • Soliman II, Kandil SM, Abdou EM. Gabapentin-saccharin co-crystals with enhanced physicochemical properties and in vivo absorption formulated as oro-dispersible tablets. Pharm Dev Technol. 2020;25(2):227–236.
  • Chadha K, Karan M, Bhalla Y, et al. Cocrystals of hesperetin: structural, pharmacokinetic, and pharmacodynamic evaluation. Cryst Growth Des. 2017;17(5):2386–2405.
  • Xu J, Huang Y, Ruan S, et al. Cocrystals of isoliquiritigenin with enhanced pharmacokinetic performance. CrystEngComm. 2016;18(45):8776–8786.
  • He H, Huang Y, Zhang Q, et al. Zwitterionic cocrystals of flavonoids and proline: solid-state characterization, pharmaceutical properties, and pharmacokinetic performance. Cryst Growth Des. 2016;16(4):2348–2356.
  • Li W, Pi J, Zhang Y, et al. A strategy to improve the oral availability of baicalein: the baicalein-theophylline cocrystal. Fitoterapia. 2018;129(88):85–93.
  • Haneef J, Chadha R. Sustainable synthesis of ambrisentan-syringic acid cocrystal: employing mechanochemistry in the development of novel pharmaceutical solid form. CrystEngComm. 2020;22(14):2507–2516.
  • Dai XL, Wu C, Li JH, et al. Modulating the solubility and pharmacokinetic properties of 5-fluorouracilviacocrystallization. CrystEngComm. 2020;22(21):3670–3682.
  • Wu N, Zhang Y, Ren J, et al. Preparation of quercetin-nicotinamide cocrystals and their evaluation under in vivo and in vitro conditions. RSC Adv. 2020;10(37):21852–21859.
  • Zhang Z, Yu N, Xue C, et al. Potential anti-tumor drug: co-crystal 5-fluorouracil-nicotinamide. ACS Omega. 2020;5(26):15777–15782.
  • Liu F, Jiang FB, Li YT, et al. Cocrystallization with syringic acid presents a new opportunity for effectively reducing the hepatotoxicity of isoniazid. Drug Dev Ind Pharm. 2020;46(6):988–995.
  • Thimmasetty J, Ghosh T, Nayak NS, et al. Oral bioavailability enhancement of paliperidone by the use of cocrystallization and precipitation inhibition. J Pharm Innov. 2020.DOI:10.1007/s12247-020-09428-2
  • Madhuri G, Nagaraju R, Killari AKN. Enhancement of the physicochemical properties of poorly soluble lovastatin by co-crystallization techniques—in vivo studies. Indian J Pharm Sci. 2020;82(2):66–76.
  • Song Y, Wang LY, Liu F, et al. Simultaneously enhancing the: in vitro/in vivo performances of acetazolamide using proline as a zwitterionic coformer for cocrystallization. CrystEngComm. 2019;21(19):3064–3073.
  • Zhou F, Zhou J, Zhang H, et al. Structure determination and in vitro/vivo study on carbamazepine–naringenin (1:1) cocrystal. J Drug Deliv Sci Technol. 2019;54:101244.
  • Mohite R, Mehta P, Arulmozhi S, et al. Synthesis of fisetin co-crystals with caffeine and nicotinamide using the cooling crystallization technique: biopharmaceutical studies. New J Chem. 2019;43(34):13471–13479.
  • Kawakami K. Modification of physicochemical characteristics of active pharmaceutical ingredients and application of supersaturatable dosage forms for improving bioavailability of poorly absorbed drugs. Adv Drug Deliv Rev. 2012;64(6):480–495.
  • Srivastava D, Fatima Z, Kaur CD, et al. Pharmaceutical cocrystal: a novel approach to tailor the biopharmaceutical properties of a poorly water soluble drug. Recent Pat Drug Deliv Formul. 2019;13(1):62–69.
  • Shan N, Perry ML, Weyna DR, et al. Impact of pharmaceutical cocrystals: the effects on drug pharmacokinetics. Expert Opin Drug Metab Toxicol. 2014;10(9):1255–1271.
  • Liu F, Wang LY, Yu MC, et al. A new cocrystal of isoniazid-quercetin with hepatoprotective effect: the design, structure, and in vitro/in vivo performance evaluation. Eur J Pharm Sci. 2020;144:105216.
  • Tomar S, Chakraborti S, Jindal A, et al. Cocrystals of diacerein: towards the development of improved biopharmaceutical parameters. Int J Pharm. 2020;574:118942.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.