170
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Improved hepatoprotective activity of Beta vulgaris L. leaf extract loaded self-nanoemulsifying drug delivery system (SNEDDS): in vitro and in vivo evaluation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1589-1603 | Received 21 Apr 2020, Accepted 05 Aug 2020, Published online: 26 Aug 2020

References

  • Rajaratnam M, Prystupa A, Lachowska-Kotowska P, et al. Herbal medicine for treatment and prevention of liver diseases. J Pre Clin Clin Res. 2015;8(2):55–60.
  • Shamsi-Baghbanan H, Sharifian A, Esmaeili S, et al. Hepatoprotective herbs, avicenna viewpoint. Iran Red Crescent Med J. 2014;16(1):e12313.
  • Wood NJ. Liver: nonobese individuals in the developing world are at risk of nonalcoholic fatty liver and liver disease. Nat Rev Gastroenterol Hepatol. 2010;7(7):357.
  • Hong M, Li S, Tan HY, et al. Current status of herbal medicines in chronic liver disease therapy: the biological effects, molecular targets and future prospects. Int J Mol Sci. 2015;16(12):28705–28745.
  • Stickel F, Schuppan D. Herbal medicine in the treatment of liver diseases. Dig Liver Dis. 2007;39(4):293–304.
  • El Gamal AA, AlSaid MS, Raish M, et al. Beetroot (Beta vulgaris L.) extract ameliorates gentamicin-induced nephrotoxicity associated oxidative stress, inflammation, and apoptosis in rodent model. Mediators Inflamm. 2014;2014:983952.
  • El-Gengaihi SE, Hamed MA, Aboubaker DH, et al. Flavonoids from sugar beet leaves as hepatoprotective agent. Int J Pharm Pharm Sci. 2016;8(4):281–286.
  • Refat A, Ghaffar M. The economic impact of sugar beet cultivation in new lands (study of Al-Salam Canal area status). Aust J Basic Appl Sci. 2010;4(7):1641–1649.
  • Wootton-Beard PC, Brandt K, Fell D, et al. Effects of a beetroot juice with high neobetanin content on the early-phase insulin response in healthy volunteers. J Nutr Sci. 2014;3:e9.
  • Georgiev VG, Weber J, Kneschke E-M, et al. Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit dark red. Plant Foods Hum Nutr. 2010;65(2):105–111.
  • Lee CH, Wettasinghe M, Bolling BW, et al. Betalains, phase II enzyme-inducing components from red beetroot (Beta vulgaris L.) extracts. Nutr Cancer. 2005;53(1):91–103.
  • Vulić JJ, Ćebović TN, Čanadanović-Brunet JM, et al. In vivo and in vitro antioxidant effects of beetroot pomace extracts. J Funct Foods. 2014;6:168–175.
  • Ninfali P, Angelino D. Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia. 2013;89:188–199.
  • Jain S, Garg VK, Sharma PK. Anti-inflammatory activity of aqueous extract of Beta vulgaris L. J Basic Clin Pharm. 2011;2(2):83–86.
  • Chakole R, Zade S, Charde M. Antioxidant and anti-inflammatory activity of ethanolic extract of Beta vulgaris Linn. roots. Int J Biomed Adv Res. 2011;2(4):124–130.
  • Lorizola IM, Furlan CPB, Portovedo M, et al. Beet stalks and leaves (Beta vulgaris L.) protect against high-fat diet-induced oxidative damage in the liver in mice. Nutrients. 2018;10(7):872.
  • Jain NK, Singhai AK. Protective role of Beta vulgaris L. leaves extract and fractions on ethanol-mediated hepatic toxicity. Acta Pol Pharm. 2012;69(5):945–950.
  • Hashem A, Soliman M, Hamed M, et al. Beta vulgaris subspecies cicla var. flavescens (Swiss chard): flavonoids, hepatoprotective and hypolipidemic activities. Pharmazie. 2016;71(4):227–232.
  • Weerapol Y, Limmatvapirat S, Kumpugdee-Vollrath M, et al. Spontaneous emulsification of nifedipine-loaded self-nanoemulsifying drug delivery system. AAPS PharmSciTech. 2015;16(2):435–443.
  • Chakraborty S, Shukla D, Mishra B, et al. Lipid—an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm. 2009;73(1):1–15.
  • Porter CJ, Pouton CW, Cuine JF, et al. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev. 2008;60(6):673–691.
  • Seo YG, Kim DW, Yousaf AM, et al. Solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability of poorly water-soluble tacrolimus: physicochemical characterisation and pharmacokinetics. J Microencapsul. 2015;32(5):503–510.
  • Wang H, Li Q, Deng W, et al. Self-nanoemulsifying drug delivery system of trans-cinnamic acid: formulation development and pharmacodynamic evaluation in alloxan-induced type 2 diabetic rat model. Drug Dev Res. 2015;76(2):82–93.
  • Date AA, Desai N, Dixit R, et al. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine (Lond). 2010;5(10):1595–1616.
  • Balakumar K, Raghavan CV, Selvan NT, et al. Self nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf B Biointerfaces. 2013;112:337–343.
  • Jeevana JB, Sreelakshmi K. Design and evaluation of self-nanoemulsifying drug delivery system of flutamide. J Young Pharm. 2011;3(1):4–8.
  • Shakeel F, Haq N, El-Badry M, et al. Ultra fine super self-nanoemulsifying drug delivery system (SNEDDS) enhanced solubility and dissolution of indomethacin. J Mol Liq. 2013;180:89–94.
  • Imada C, Takahashi T, Kuramoto M, et al. Improvement of oral bioavailability of N-251, a novel antimalarial drug, by increasing lymphatic transport with long-chain fatty acid-based self-nanoemulsifying drug delivery system. Pharm Res. 2015;32(8):2595–2608.
  • Qian J, Meng H, Xin L, et al. Self-nanoemulsifying drug delivery systems of myricetin: formulation development, characterization, and in vitro and in vivo evaluation. Colloids Surf B Biointerfaces. 2017;160:101–109.
  • Kollipara S, Gandhi RK. Pharmacokinetic aspects and in vitro-in vivo correlation potential for lipid-based formulations. Acta Pharm Sin B. 2014;4(5):333–349.
  • Khan AW, Kotta S, Ansari SH, et al. Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: design, characterization, in vitro and in vivo evaluation. Drug Deliv. 2015;22(4):552–561.
  • Tran TH, Guo Y, Song D, et al. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J Pharm Sci. 2014;103(3):840–852.
  • Mostafa DM, Ammar NM, Abd El-Alim SH, et al. Transdermal microemulsions of Glycyrrhiza glabra L.: characterization, stability and evaluation of antioxidant potential. Drug Deliv. 2014;21(2):130–139.
  • Rolim A, Maciel CP, Kaneko TM, et al. Validation assay for total flavonoids, as rutin equivalents, from Trichilia catigua Adr. Juss (Meliaceae) and Ptychopetalum olacoides Bentham (Olacaceae) commercial extract. J AOAC Int. 2005;88(4):1015–1019.
  • Mostafa DM, Kassem AA, Asfour MH, et al. Transdermal cumin essential oil nanoemulsions with potent antioxidant and hepatoprotective activities: in-vitro and in-vivo evaluation. J Mol Liq. 2015;212:6–15.
  • Heshmati N, Cheng X, Eisenbrand G, et al. Enhancement of oral bioavailability of E804 by self-nanoemulsifying drug delivery system (SNEDDS) in rats. J Pharm Sci. 2013;102(10):3792–3799.
  • Agrawal AG, Kumar A, Gide PS. Formulation of solid self-nanoemulsifying drug delivery systems using N-methyl pyrrolidone as cosolvent. Drug Dev Ind Pharm. 2015;41(4):594–604.
  • Beg S, Swain S, Singh HP, et al. Development, optimization, and characterization of solid self-nanoemulsifying drug delivery systems of valsartan using porous carriers. AAPS PharmSciTech. 2012;13(4):1416–1427.
  • Kassem AA, Mohsen AM, Ahmed RS, et al. Self-nanoemulsifying drug delivery system (SNEDDS) with enhanced solubilization of nystatin for treatment of oral candidiasis: design, optimization, in vitro and in vivo evaluation. J Mol Liq. 2016;218:219–232.
  • Elnaggar YS, El-Massik MA, Abdallah OY. Self-nanoemulsifying drug delivery systems of tamoxifen citrate: design and optimization. Int J Pharm. 2009;380(1–2):133–141.
  • Zargar-Shoshtari S, Wen J, Alany RG. Formulation and physicochemical characterization of imwitor 308 based self microemulsifying drug delivery systems. Chem Pharm Bull. 2010;58(10):1332–1338.
  • Parmar N, Singla N, Amin S, et al. Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self nanoemulsifying drug delivery system. Colloids Surf B Biointerfaces. 2011;86(2):327–338.
  • Wang R, Wang J, Song F, et al. Tanshinol ameliorates CCl4-induced liver fibrosis in rats through the regulation of Nrf2/HO-1 and NF-κB/IκBα signaling pathway. Drug Des Devel Ther. 2018;12:1281–1292.
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–358.
  • Nishikimi M, Appaji N, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun. 1972;46(2):849–854.
  • Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582(1):67–78.
  • Badran MM, Taha EI, Tayel MM, et al. Ultra-fine self nanoemulsifying drug delivery system for transdermal delivery of meloxicam: dependency on the type of surfactants. J Mol Liq. 2014;190:16–22.
  • Do L, Withayyapayanon A, Harwell J, et al. Environmentally friendly vegetable oil microemulsions using extended surfactants and linkers. J Surfact Deterg. 2009;12(2):91–99.
  • Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. London; Chicago: APhA/Pharmaceutical Press; 2009.
  • Patel J, Patel A, Raval M, et al. Formulation and development of a self-nanoemulsifying drug delivery system of irbesartan. J Adv Pharm Technol Res. 2011;2(1):9–16.
  • Date AA, Nagarsenker MS. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int J Pharm. 2007;329(1–2):166–172.
  • Sakloetsakun D, Dunnhaupt S, Barthelmes J, et al. Combining two technologies: multifunctional polymers and self-nanoemulsifying drug delivery system (SNEDDS) for oral insulin administration. Int J Biol Macromol. 2013;61:363–372.
  • Mohd Izham MN, Hussin Y, Aziz MNM, et al. Preparation and characterization of self nano-emulsifying drug delivery system loaded with citraland its antiproliferative effect on colorectal cells in vitro. Nanomaterials (Basel, Switzerland). 2019;9(7):1028.
  • Joubran RF, Cornell DG, Parris N. Microemulsions of triglyceride and non-ionic surfactant — effect of temperature and aqueous phase composition. Colloids Surf A Physicochem Eng Asp. 1993;80(2–3):153–160.
  • Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45(1):89–121.
  • Dixit AR, Rajput SJ, Patel SG. Preparation and bioavailability assessment of SMEDDS containing valsartan. AAPS PharmSciTech. 2010;11(1):314–321.
  • Ogunniyi DS. Castor oil: a vital industrial raw material. Bioresour Technol. 2006;97(9):1086–1091.
  • Al-Okbi SY, Mohamed DA, Hamed TE-S, et al. Enhanced prevention of progression of non alcoholic fatty liver to steatohepatitis by incorporating pumpkin seed oil in nanoemulsions. J Mol Liq. 2017;225:822–832.
  • Shakeel F, Haq N, Alanazi FK, et al. Polymeric solid self-nanoemulsifying drug delivery system of glibenclamide using coffee husk as a low cost biosorbent. Powder Technol. 2014;256:352–360.
  • Kanuganti S, Jukanti R, Veerareddy PR, et al. Paliperidone-loaded self-emulsifying drug delivery systems (SEDDS) for improved oral delivery. J Dispers Sci Technol. 2012;33(4):506–515.
  • Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and 'self-microemulsifying' drug delivery systems. Eur J Pharm Sci. 2000;11(Suppl. 2):S93–S98.
  • Tarr BD, Yalkowsky SH. Enhanced intestinal absorption of cyclosporine in rats through the reduction of emulsion droplet size. Pharm Res. 1989;6(1):40–43.
  • Shah NH, Carvajal MT, Patel CI, et al. Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int J Pharm. 1994;106(1):15–23.
  • Lee BS, Kang MJ, Choi WS, et al. Solubilized formulation of olmesartan medoxomil for enhancing oral bioavailability. Arch Pharm Res. 2009;32(11):1629–1635.
  • Lu YY, Dai WB, Wang X, et al. Effects of crystalline state and self-nanoemulsifying drug delivery system (SNEDDS) on oral bioavailability of the novel anti-HIV compound 6-benzyl-1-benzyloxymethyl-5-iodouracil in rats. Drug Dev Ind Pharm. 2018;44(2):329–337.
  • Nekkanti V, Karatgi P, Prabhu R, et al. Solid self-microemulsifying formulation for candesartan cilexetil. AAPS PharmSciTech. 2010;11(1):9–17.
  • Eleftheriadis GK, Mantelou P, Karavasili C, et al. Development and characterization of a self-nanoemulsifying drug delivery system comprised of rice bran oil for poorly soluble drugs. AAPS PharmSciTech. 2019;20(2):78.
  • Usmani A, Mishra A, Arshad M, et al. Development and evaluation of doxorubicin self nanoemulsifying drug delivery system with Nigella sativa oil against human hepatocellular carcinoma. Artif Cells Nanomed Biotechnol. 2019;47(1):933–944.
  • Basha M, Abd El-Alim SH, Kassem AA, et al. Benzocaine loaded solid lipid nanoparticles: formulation design, in vitro and in vivo evaluation of local anesthetic effect. Curr Drug Deliv. 2015;12(6):680–692.
  • Junyaprasert VB, Singhsa P, Suksiriworapong J, et al. Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid. Int J Pharm. 2012;423(2):303–311.
  • Mazzarino L, da Silva Pitz H, Lorenzen Voytena AP, et al. Jaboticaba (Plinia peruviana) extract nanoemulsions: development, stability, and in vitro antioxidant activity. Drug Dev Ind Pharm. 2018;44(4):643–651.
  • Kamtekar S, Keer V, Patil V. Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation. J Appl Pharm Sci. 2014;4(9):61.
  • Imam S, Azhar I, Mahmood ZA. In-vitro evaluation of sun protection factor of a cream formulation prepared from extracts of Musa acuminata (L.), Psidium guajava (L.) and Pyrus communis (L.). Asian J Pharm Clin Res. 2015;8(3):234–237.
  • Xi J, Chang Q, Chan CK, et al. Formulation development and bioavailability evaluation of a self-nanoemulsified drug delivery system of oleanolic acid. AAPS PharmSciTech. 2009;10(1):172–182.
  • Wu W, Wang Y, Que L. Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system. Eur J Pharm Biopharm. 2006;63(3):288–294.
  • Shafiq S, Shakeel F, Talegaonkar S, et al. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm. 2007;66(2):227–243.
  • Bayindir ZS, Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci. 2010;99(4):2049–2060.
  • Peppas NA, Sahlin JJ. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57(2):169–172.
  • Lokhande AB, Mishra S, Kulkarni RD, et al. Preparation and characterization of repaglinide loaded ethylcellulose nanoparticles by solvent diffusion technique using high pressure homogenizer. J Pharm Res. 2013;7(5):421–426.
  • Laxmi M, Bhardwaj A, Mehta S, et al. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether. Artif Cells Nanomed Biotechnol. 2015;43(5):334–344.
  • Chen IS, Chen Y-C, Chou C-H, et al. Hepatoprotection of silymarin against thioacetamide-induced chronic liver fibrosis. J Sci Food Agric. 2012;92(7):1441–1447.
  • Alamri ZZ. Effect of luteolin and quercetin on thioacetamide induced hepatic fibrosis in rats. Int J Pharmacol. 2019;15(7):863–871.
  • Hamed G, Bahgat N, Abdel Mottaleb F, et al. Effect of flavonoid quercetin supplement on the progress of liver cirrhosis in rats. Life Sci J. 2011;8(2):641–651.
  • Haider S, Saleem S, Shameem S, et al. Is anorexia in thioacetamide-induced cirrhosis related to an altered brain serotonin concentration? Pol J Pharmacol. 2004;56(1):73–78.
  • Tang N, Zhang Y, Liu Z, et al. Correlation analysis between four serum biomarkers of liver fibrosis and liver function in infants with cholestasis. Biomed Rep. 2016;5(1):107–112.
  • Lim JH, Kim TW, Park SJ, et al. Protective effects of Platycodon grandiflorum aqueous extract on thioacetamide-induced fulminant hepatic failure in mice. J Toxicol Pathol. 2011;24(4):223–228.
  • Wang CH, Chen YJ, Lee TH, et al. Protective effect of MDL28170 against thioacetamide-induced acute liver failure in mice. J Biomed Sci. 2004;11(5):571–578.
  • El-Baz FK, Salama A, Salama RAA. Therapeutic effect of Dunaliella salina microalgae on thioacetamide- (TAA-) induced hepatic liver fibrosis in rats: role of TGF-β and MMP9. BioMed Res Int. 2019;2019:1–9.
  • Lin Y-Y, Hu C-T, Sun D-S, et al. Thioacetamide-induced liver damage and thrombocytopenia is associated with induction of antiplatelet autoantibody in mice. Sci Rep. 2019;9(1):17497.
  • Kretzschmar M, Machnik G, Müller A, et al. Experimental treatment of thioacetamide-induced liver cirrhosis by metenolone acetate. A morphological and biochemical study. Exp Pathol. 1991;42(1):37–46.
  • Al-Attar AM. Attenuating effect of Ginkgo biloba leaves extract on liver fibrosis induced by thioacetamide in mice. J Biomed Biotechnol. 2012;2012:761450.
  • Poli G. Pathogenesis of liver fibrosis: role of oxidative stress. Mol Aspects Med. 2000;21(3):49–98.
  • Pushpakiran G, Mahalakshmi K, Anuradha CV. Taurine restores ethanol-induced depletion of antioxidants and attenuates oxidative stress in rat tissues. Amino Acids. 2004;27(1):91–96.
  • Kojima-Yuasa A, Umeda K, Ohkita T, et al. Role of reactive oxygen species in zinc deficiency-induced hepatic stellate cell activation. Free Radic Biol Med. 2005;39(5):631–640.
  • Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, et al. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev. 2005;29(4):653–671.
  • Khoruts A, Stahnke L, McClain CJ, et al. Circulating tumor necrosis factor, interleukin-1 and interleukin-6 concentrations in chronic alcoholic patients. Hepatology. 1991;13(2):267–276.
  • Hill DB, Marsano LS, McClain CJ. Increased plasma interleukin-8 concentrations in alcoholic hepatitis. Hepatology. 1993;18(3):576–580.
  • Czaja MJ, Flanders KC, Biempica L, et al. Expression of tumor necrosis factor-alpha and transforming growth factor-beta 1 in acute liver injury. Growth Factors. 1989;1(3):219–226.
  • Czaja MJ, Weiner FR, Flanders KC, et al. In vitro and in vivo association of transforming growth factor-beta 1 with hepatic fibrosis. J Cell Biol. 1989;108(6):2477–2482.
  • Kang JS, Wanibuchi H, Morimura K, et al. Role of CYP2E1 in thioacetamide-induced mouse hepatotoxicity. Toxicol Appl Pharmacol. 2008;228(3):295–300.
  • Ali SO, Darwish HA, Ismail NA. Curcumin, silybin Phytosome(®) and α-R-lipoic acid mitigate chronic hepatitis in rat by inhibiting oxidative stress and inflammatory cytokines production. Basic Clin Pharmacol Toxicol. 2016;118(5):369–380.
  • Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem. 2019;299:125124.
  • Charman SA, Charman WN, Rogge MC, et al. Self-emulsifying drug delivery systems: formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm Res. 1992;9(1):87–93.
  • Kang BK, Lee JS, Chon SK, et al. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int J Pharm. 2004;274(1–2):65–73.
  • Beg S, Jena SS, Patra CN, et al. Development of solid self-nanoemulsifying granules (SSNEGs) of ondansetron hydrochloride with enhanced bioavailability potential. Colloids Surf B Biointerfaces. 2013;101:414–423.
  • Hu M, Wu B, Liu Z. Bioavailability of polyphenols and flavonoids in the era of precision medicine. Mol Pharm. 2017;14(9):2861–2863.
  • Ahmad N, Ahmad R, Naqvi AA, et al. Enhancement of quercetin oral bioavailability by self-nanoemulsifying drug delivery system and their quantification through ultra high performance liquid chromatography and mass spectrometry in cerebral ischemia. Drug Res (Stuttg). 2017;67(10):564–575.
  • Cui J, Yu B, Zhao Y, et al. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. Int J Pharm. 2009;371(1–2):148–155.
  • Zhu JX, Tang D, Feng L, et al. Development of self-microemulsifying drug delivery system for oral bioavailability enhancement of berberine hydrochloride. Drug Dev Ind Pharm. 2013;39(3):499–506.
  • Kim CK, Cho YJ, Gao ZG. Preparation and evaluation of biphenyl dimethyl dicarboxylate microemulsions for oral delivery. J Control Release. 2001;70(1–2):149–155.
  • Hashempour-Baltork F, Torbati M, Azadmard-Damirchi S, et al. Chemical, rheological and nutritional characteristics of sesame and olive oils blended with linseed oil. Adv Pharm Bull. 2018;8(1):107–113.
  • Taniguchi K, Muranishi S, Sezaki H. Enhanced intestinal permeability to macromolecules. II. Improvement of the large intestinal absorption of heparin by lipid-surfactant mixed micelles in rat. Int J Pharm. 1980;4(3):219–228.
  • Muranishi S. Absorption enhancers. Crit Rev Ther Drug Carrier Syst. 1990;7(1):1–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.