200
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Intranasal delivery of a nicotine vaccine candidate induces antibodies in mouse blood and lung mucosal secretions that specifically neutralize nicotine

ORCID Icon, , &
Pages 1656-1664 | Received 31 Jan 2020, Accepted 01 Sep 2020, Published online: 15 Sep 2020

References

  • Goniewicz ML, Delijewski M. Nicotine vaccines to treat tobacco dependence. Hum Vaccin Immunother. 2013;9(1):13–25.
  • Fiore MC, Jaén CR, Baker TB, et al. Treating tobacco use and dependence. 2008. update. Rockville (MD): US Department of Health and Human Services; 2008.
  • Tonstad S, Tønnesen P, Hajek P, et al. Effect of maintenance therapy with varenicline on smoking cessation: a randomized controlled trial. JAMA. 2006;296(1):64–71.
  • Jorenby DE, Leischow SJ, Nides MA, et al. A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. N Engl J Med. 1999;340(9):685–691.
  • Maurer P, Jennings GT, Willers J, et al. A therapeutic vaccine for nicotine dependence: preclinical efficacy, and Phase I safety and immunogenicity. Eur J Immunol. 2005;35(7):2031–2040.
  • Raupach T, Hoogsteder PH, van Schayck CPO. Nicotine vaccines to assist with smoking cessation: current status of research. Drugs. 2012;72(4):e1–e16.
  • Moreno AY, Azar MR, Warren NA, et al. A critical evaluation of a nicotine vaccine within a self-administration behavioral model. Mol Pharm. 2010;7(2):431–441.
  • Hatsukami DK, Rennard S, Jorenby D, et al. Safety and immunogenicity of a nicotine conjugate vaccine in current smokers. Clin Pharmacol Ther. 2005;78(5):456–467.
  • Hoogsteder PH, Kotz D, van Spiegel PI, et al. Efficacy of the nicotine vaccine 3'-AmNic-rEPA (NicVAX) co-administered with varenicline and counselling for smoking cessation: a randomized placebo-controlled trial. Addiction. 2014;109(8):1252–1259.
  • U.S. National Library of Medicine. NicVAX/Placebo as an aid for smoking cessation may 9, 2012. Available from: https://clinicaltrials.gov/ct2/show/NCT00836199.
  • U.S. National Library of Medicine. A second study of NicVAX/Placebo as an aid for smoking cessation may 9, 2012. Available from: https://clinicaltrials.gov/ct2/show/NCT01102114.
  • Cornuz J, Zwahlen S, Jungi WF, et al. A vaccine against nicotine for smoking cessation: a randomized controlled trial. PloS One. 2008;3(6):e2547.
  • Biosciences S. Selecta Biosciences, Inc. Initiates phase 1 clinical study of sel-068, a first-in-class synthetic nicotine vaccine for smoking cessation and relapse prevention, 2011. Available from: https://www.biospace.com/article/releases/selecta-biosciences-inc-initiates-phase-1-clinical-study-of-sel-068-a-first-in-class-synthetic-nicotine-vaccine-for-smoking-cessation-and-relapse-p/.
  • U.S. National Library of Medicine. Safety and pharmacodynamics of SEL-068 vaccine in smokers and non-smokers, 2016. Available from: https://clinicaltrials.gov/ct2/show/NCT01478893.
  • U.S. National Library of Medicine. Study of TA-NIC to Assess the Efficacy and Safety of the Vaccine as an Aid to Smoking Cessation 2011. Available from: https://clinicaltrials.gov/ct2/show/results/NCT00633321.
  • Esterlis I, Hannestad JO, Perkins E, et al. Effect of a nicotine vaccine on nicotine binding to β2*-nicotinic acetylcholine receptors in vivo in human tobacco smokers. Am J Psychiatry. 2013;170(4):399–407.
  • U.S. National Library of Medicine. Study to evaluate the efficacy, safety, tolerability and immunogenicity of 100µg NIC002 vaccine in cigarette smokers who are motivated to quit smoking, 2017. Available from: https://clinicaltrials.gov/ct2/show/NCT00736047.
  • Tonstad S, Heggen E, Giljam H, et al. Niccine®, a nicotine vaccine, for relapse prevention: a phase II, randomized, placebo-controlled, multicenter clinical trial. Nicotine Tob Res. 2013;15(9):1492–1501.
  • Hatsukami DK, Jorenby DE, Gonzales D, et al. Immunogenicity and smoking-cessation outcomes for a novel nicotine immunotherapeutic. Clin Pharmacol Ther. 2011;89(3):392–399.
  • Fahim RE, Kessler PD, Kalnik MW. Therapeutic vaccines against tobacco addiction. Expert Rev Vaccines. 2013;12(3):333–342.
  • Miller KD, Roque R, Clegg CH. Novel anti-nicotine vaccine using a trimeric coiled-coil hapten carrier. PLoS One. 2014;9(12):e114366.
  • Hu Y, Zheng H, Huang W, et al. A novel and efficient nicotine vaccine using nano-lipoplex as a delivery vehicle. Hum Vaccin Immunother. 2014;10(1):64–72.
  • Sanderson SD, Cheruku SR, Padmanilayam MP, et al. Immunization to nicotine with a peptide-based vaccine composed of a conformationally biased agonist of C5a as a molecular adjuvant. Int Immunopharm. 2003;3(1):137–146.
  • Pryde DC, Jones LH, Gervais DP, et al. Selection of a novel anti-nicotine vaccine: influence of antigen design on antibody function in mice. PLoS One. 2013;8(10):e76557.
  • Pravetoni M, Keyler D, Pidaparthi R, et al. Structurally distinct nicotine immunogens elicit antibodies with non-overlapping specificities. Biochem Pharmacol. 2012;83(4):543–550.
  • Moreno AY, Azar MR, Koob GF, et al. Probing the protective effects of a conformationally constrained nicotine vaccine. Vaccine. 2012;30(47):6665–6670.
  • Zeigler DF, Roque R, Clegg CH. Optimization of a multivalent peptide vaccine for nicotine addiction. Vaccine. 2019;37(12):1584–1590.
  • Zheng H, Hu Y, Huang W, et al. Negatively charged carbon nanohorn supported cationic liposome nanoparticles: a novel delivery vehicle for anti-nicotine vaccine. J Biomed Nanotechnol. 2015;11(12):2197–2210.
  • Hicks MJ, Rosenberg JB, De BP, et al. AAV-directed persistent expression of a gene encoding anti-nicotine antibody for smoking cessation. Sci Transl Med. 2012;4(140):140ra87.
  • Wang S, Liu H, Zhang X, et al. Intranasal and oral vaccination with protein-based antigens: advantages, challenges and formulation strategies. Protein Cell. 2015;6(7):480–503.
  • Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol. 2012;12(8):592–605.
  • Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med. 2005;11(4 Suppl):S45–S53.
  • Corthésy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front Immunol. 2013;4:185.
  • IgA and mucosal homeostasis [Internet]. Madame Curie Bioscience Database, 2004. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6628/.
  • Pravetoni M, Keyler D, Raleigh M, et al. Vaccination against nicotine alters the distribution of nicotine delivered via cigarette smoke inhalation to rats. Biochem Pharmacol. 2011;81(9):1164–1170.
  • Cerny E, Levy R, Mauel J, et al. Preclinical development of a vaccine 'against smoking'. Onkologie. 2002;25(5):406–411.
  • Fraleigh NL, Boudreau J, Bhardwaj N, et al. Evaluating the immunogenicity of an intranasal vaccine against nicotine in mice using the Adjuvant Finlay Proteoliposome (AFPL1). Heliyon. 2016;2(8):e00147.
  • Rodríguez T, Pérez O, Ugrinovic S, et al. Bacterial derived proteoliposome as ideal delivery system and cellular adjuvant. Vaccine. 2006;24:S24–S25.
  • McCluskie MJ, Thorn J, Gervais DP, et al. Anti-nicotine vaccines: comparison of adjuvanted CRM197 and Qb-VLP conjugate formulations for immunogenicity and function in non-human primates. Int Immunopharmacol. 2015;29(2):663–671.
  • Keyler DE, Roiko SA, Benlhabib E, et al. Monoclonal nicotine-specific antibodies reduce nicotine distribution to brain in rats: dose- and affinity-response relationships. Drug Metab Dispos. 2005;33(7):1056–1061.
  • Cervarix: FDA; 2016. Available from: https://www.fda.gov/vaccines-blood-biologics/vaccines/cervarix.
  • Garçon N, Chomez P, Van Mechelen M. GlaxoSmithKline adjuvant systems in vaccines: concepts, achievements and perspectives. Expert Rev Vaccines. 2007;6(5):723–739.
  • Xu H, Ruwona TB, Thakkar SG, et al. Nasal aluminum (oxy)hydroxide enables adsorbed antigens to induce specific systemic and mucosal immune responses. Hum Vaccin Immunother. 2017;13(11):2688–2694.
  • Baldridge JR, Yorgensen Y, Ward JR, et al. Monophosphoryl lipid A enhances mucosal and systemic immunity to vaccine antigens following intranasal administration. Vaccine. 2000;18(22):2416–2425.
  • Childers NK, Miller KL, Tong G, et al. Adjuvant activity of monophosphoryl lipid A for nasal and oral immunization with soluble or liposome-associated antigen. Infect Immun. 2000;68(10):5509–5516.
  • Harris J, Markl J. Keyhole limpet hemocyanin (KLH): a biomedical review. Micron. 1999;30(6):597–623.
  • Swerdlow RD, Ebert RF, Lee P, et al. Keyhole limpet hemocyanin: structural and functional characterization of two different subunits and multimers. Comp Biochem Physiol B, Biochem Mol Biol. 1996;113(3):537–548.
  • Raleigh MD, Pravetoni M, Harris AC, et al. Selective effects of a morphine conjugate vaccine on heroin and metabolite distribution and heroin-induced behaviors in rats. J Pharmacol Exp Ther. 2013;344(2):397–406.
  • Li Q-Q, Sun C-Y, Luo Y-X, et al. A conjugate vaccine attenuates morphine-and heroin-induced behavior in rats. Int J Neuropsychopharmacol. 2015;18(5):pyu093.
  • Zhao Z, Hu Y, Hoerle R, et al. A nanoparticle-based nicotine vaccine and the influence of particle size on its immunogenicity and efficacy. Nanomedicine. 2017;13(2):443–454.
  • Pravetoni M, Le Naour M, Tucker AM, et al. Reduced antinociception of opioids in rats and mice by vaccination with immunogens containing oxycodone and hydrocodone haptens. J Med Chem. 2013;56(3):915–923.
  • Harris JR, Gebauer W, Guderian FU, et al. Keyhole limpet hemocyanin (KLH), I: Reassociation from Immucothel® followed by separation of KLH1 and KLH2. Micron. 1997;28(1):31–41.
  • Immunocyanin: biosyn proprietary formulation IMMUCOTHEL®; 2019. Available from: https://biosyncorp.com/immucothelr/.
  • Langone JJ, Gjika HB, Van Vunakis H. Nicotine and its metabolites. Radioimmunoassays for nicotine and cotinine. Biochemistry. 1973;12(24):5025–5030.
  • Chen X, Pravetoni M, Bhayana B, et al. High immunogenicity of nicotine vaccines obtained by intradermal delivery with safe adjuvants. Vaccine. 2012;31(1):159–164.
  • Zhu S, Lansakara-P DS, Li X, et al. Lysosomal delivery of a lipophilic gemcitabine prodrug using novel acid-sensitive micelles improved its antitumor activity. Bioconjug Chem. 2012;23(5):966–980.
  • Kamphuis T, Meijerhof T, Stegmann T, et al. Immunogenicity and protective capacity of a virosomal respiratory syncytial virus vaccine adjuvanted with monophosphoryl lipid A in mice. PloS One. 2012;7(5):e36812.
  • Lowrie DB, Whalen RG (Eds.) DNA vaccines: Methods and protocols. Methods in Molecular Medicine™ book series, 2000. Vol. 29. Springer Science & Business Media New York (copyright holder), Humana Press (Totowa, NJ).
  • Thakkar SG, Warnken ZN, Alzhrani RF, et al. Intranasal immunization with aluminum salt-adjuvanted dry powder vaccine. J Control Release. 2018;292:111–118.
  • Hatsukami DK, Stead LF, Gupta PC. Tobacco addiction. The Lancet. 2008;371(9629):2027–2038.
  • Pentel PR, LeSage MG. New directions in nicotine vaccine design and use. Adv Pharmacol. 2014;69:553–580.
  • Janda KD, Kalnik M, Thisted T, Inventors; Antidote Therapeutics Inc, Scripps Research Institute, Assignee. Nicotine-degrading enzymes for treating nicotine addiction and nicotine poisoning. U.S. Patent Application # 15/749,630.
  • Chen X-Z, Zhang R-Y, Wang X-F, et al. Peptide-free synthetic nicotine vaccine candidates with α-galactosylceramide as adjuvant. Mol Pharm. 2019;16(4):1467–1476.
  • Bremer PT, Janda KD. Conjugate vaccine immunotherapy for substance use disorder. Pharmacol Rev. 2017;69(3):298–315.
  • Nya L, Fraleigh JB, Acosta-Ramirez E, Murad Y, et al. Improvement of vaccine efficacy by inducing mucosal and systemic immune responses. Proceedings of the 2016 International Society for Vaccines Annual Congress; 2016.
  • Fraleigh NL, Oliva R, Lewicky JD, et al. Assessing the immunogenicity and toxicity of the AFPL1-conjugate nicotine vaccine using heterologous and homologous vaccination routes. PloS One. 2019;14(8):e0221708.
  • Zhao Z, Powers K, Hu Y, et al. Engineering of a hybrid nanoparticle-based nicotine nanovaccine as a next-generation immunotherapeutic strategy against nicotine addiction: a focus on hapten density. Biomaterials. 2017;123:107–117.
  • Hu K, Huang X, Jiang Y, et al. Influence of hapten density on immunogenicity for anti-ciprofloxacin antibody production in mice. Biosci Trends. 2012;6(2):52–56.
  • Yu L, Tan M, Ho B, et al. Determination of critical micelle concentrations and aggregation numbers by fluorescence correlation spectroscopy: aggregation of a lipopolysaccharide. Anal Chim Acta. 2006;556(1):216–225.
  • Liu Z, Zhou C, Qin Y, et al. Coordinating antigen cytosolic delivery and danger signaling to program potent cross-priming by micelle-based nanovaccine. Cell Discov. 2017;3(1):1–14.
  • Becker R, Eichler M, Jennemann R, et al. Phase I clinical trial on adjuvant active immunotherapy of human gliomas with GD2-conjugate. Br J Neurosurg. 2002;16(3):269–275.
  • Vernacchio L, Bernstein H, Pelton S, et al. Effect of monophosphoryl lipid A (MPL®) on T-helper cells when administered as an adjuvant with pneumocococcal–CRM197 conjugate vaccine in healthy toddlers. Vaccine. 2002;20(31–32):3658–3667.
  • Biosyn Immunocyanin products. 2020 [cited 2020 Jul 7]. https://biosyncorp.com/klh/biosyn_immunocyanin_products/#:∼:text=Isoelectric%20point%20(pI)%20∼%20pH,at%20approximately%20370%2C000%20%2D%20380%2C000%20Dalton.
  • Sloat BR, Cui Z. Nasal immunization with anthrax protective antigen protein adjuvanted with polyriboinosinic-polyribocytidylic acid induced strong mucosal and systemic immunities. Pharm Res. 2006;23(6):1217–1226.
  • Saunders NB, Shoemaker DR, Brandt BL, et al. Immunogenicity of intranasally administered meningococcal native outer membrane vesicles in mice. Infect Immun. 1999;67(1):113–119.
  • Ma C, Li Y, Wang L, et al. Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: implication for designing novel mucosal MERS vaccines. Vaccine. 2014;32(18):2100–2108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.