2,293
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Impact of bile salts and a medium chain fatty acid on the physical properties of self-emulsifying drug delivery systems

, , , &
Pages 22-35 | Received 09 Feb 2020, Accepted 11 Nov 2020, Published online: 06 Dec 2020

References

  • Pouton CW , Porter CJH. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60(6):625–637.
  • Williams HD , Ford L , Igonin A , et al. Unlocking the full potential of lipid-based formulations using lipophilic salt/ionic liquid forms. Adv Drug Deliv Rev. 2019;142:75–90.
  • Zupančič O , Partenhauser A , Lam HT , et al. Bernkop-Schnürch, Development and in vitro characterisation of an oral self-emulsifying delivery system for daptomycin. Eur J Pharm Sci. 2016;562:180–186.
  • Bonengel S , Jelkmann M , Abdulkarim M , et al. Impact of different hydrophobic ion pairs of octreotide on its oral bioavailability in pigs. J Control Release. 2018;273:21–29.
  • Zupančič O , Grieβinger JA , Rohrer J , et al. Development, in vitro and in vivo evaluation of a self-emulsifying drug delivery system (SEDDS) for oral enoxaparin administration. Eur J Pharm Biopharm. 2016;109:113–121.
  • Hintzen F , Perera G , Hauptstein S , et al. In vivo evaluation of an oral self-microemulsifying drug delivery system (SMEDDS) for leuprorelin. Int J Pharm. 2014;472(1-2):20–26.
  • Menzel C , Holzeisen T , Laffleur F , et al. In vivo evaluation of an oral self-emulsifying drug delivery system (SEDDS) for exenatide. J Control Release. 2018;277:165–172.
  • Zhang J , Li J , Ju Y , et al. Mechanism of enhanced oral absorption of Morin by phospholipid complex based self-nanoemulsifying drug delivery system. Mol Pharm. 2015;12(2):504–513.
  • Zaichik S , Steinbring C , Menzel C , et al. Development of self-emulsifying drug delivery systems (SEDDS) for ciprofloxacin with improved mucus permeating properties. Int J Pharm. 2018;547(1-2):282–290.
  • Hetényi G , Griesser J , Moser M , et al. Comparison of the protective effect of self-emulsifying peptide drug delivery systems towards intestinal proteases and glutathione. Int J Pharm. 2017.
  • Griesser J , Hetényi G , Kadas H , et al. Self-emulsifying peptide drug delivery systems: How to make them highly mucus permeating. Int J Pharm. 2018;538(1-2):159–166.
  • Parthasarathi S , Muthukumar SP , Anandharamakrishnan C. The influence of droplet size on the stability, in vivo digestion, and oral bioavailability of vitamin E emulsions. Food Funct. 2016;7(5):2294–2302.
  • Michaelsen MH , Wasan KM , Sivak O , et al. The effect of digestion and drug load on halofantrine absorption from self-nanoemulsifying drug delivery system (SNEDDS). Aaps J. 2016;18(1):180–186.
  • Leonaviciute G , Zupančič O , Prüfert F , et al. Impact of lipases on the protective effect of SEDDS for incorporated peptide drugs towards intestinal peptidases. Int J Pharm. 2016;508(1-2):102–108.
  • He H , Lu Y , Qi J , et al. Adapting liposomes for oral drug delivery. Acta Pharm Sin B. 2019.
  • Jódar-Reyes AB , Torcello-Gómez A , Wulff-Pérez M , et al. Different stability regimes of oil-in-water emulsions in the presence of bile salts. Food Res Int. 2010;43:1634–1641.
  • Ball RL , Bajaj P , Whitehead KA. Oral delivery of siRNA lipid nanoparticles: fate in the GI tract. Sci Rep. 2018;8. DOI:10.1038/s41598-018-20632-6
  • Maldonado-Valderrama J , Wilde P , MacIerzanka A , et al. The role of bile salts in digestion. Adv Colloid Interface Sci. 2011;165(1):36–46.
  • Zhang Z , Gao F , Jiang S , et al. Bile salts enhance the intestinal absorption of lipophilic drug loaded lipid nanocarriers: mechanism and effect in rats. Int J Pharm. 2013;452(1-2):374–381.
  • Matsuoka K , Moroi Y. Micelle formation of sodium deoxycholate and sodium ursodeoxycholate (Part 1). Biochim Biophys Acta - Mol Cell Biol Lipids. 2002;1580(2-3):189–199.
  • Lupo N , Tkadlečková VN , Jelkmann M , et al. Self-emulsifying drug delivery systems: In vivo evaluation of their potential for oral vaccination. Acta Biomater. 2019;94:425–434.
  • Leichner C , Menzel C , Laffleur F , et al. Development and in vitro characterization of a papain loaded mucolytic self-emulsifying drug delivery system (SEDDS). Int J Pharm. 2017;530(1-2):346–353.
  • AboulFotouh K , Allam AA , El-Badry M. Self-emulsifying drug delivery systems: easy to prepare multifunctional vectors for efficient oral delivery. In: Current and Future Aspects of Nanomedicine. IntechOpen;. 2020. http://dx.doi.org/10.5772/intechopen.88412
  • Denninger A , Westedt U , Rosenberg J , et al. A rational design of a biphasic dissolution setup—modelling of biorelevant kinetics for a ritonavir hot-melt extruded amorphous solid dispersion. Pharmaceutics. 2020;12(3):237.
  • Pouton CW. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and “self-microemulsifying” drug delivery systems. Eur J Pharm Sci. 2000;11:S93–S98.
  • P, Marteau M, Minekus R, Havenaar JHJ. Huis In’t Veld, survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: validation and the effects of bile. J Dairy Sci. 1997.
  • Wickham M , Garrood M , Leney J , et al. Modification of a phospholipid stabilized emulsion interface by bile salt: effect on pancreatic lipase activity. J Lipid Res. 1998;39(3):623–632.
  • Beysseriat M , Decker EA , McClements DJ. Preliminary study of the influence of dietary fiber on the properties of oil-in-water emulsions passing through an in vitro human digestion model. Food Hydrocoll. 2006;20:800–809.
  • Mun S , Decker EA , McClements DJ. Influence of emulsifier type on in vitro digestibility of lipid droplets by pancreatic lipase. Food Res Int. 2007;40(6):770–781.
  • Tiss A , Ransac S , Lengsfeld H , et al. Surface behaviour of bile salts and tetrahydrolipstatin at air/water and oil/water interfaces. Chem Phys Lipids. 2001;111(1):73–85.
  • Euston SR , Bellstedt U , Schillbach K , et al. The adsorption and competitive adsorption of bile salts and whey protein at the oil-water interface. Soft Matter. 2011;7(19):8942.
  • Vadnere M , Lindenbaum S. Distribution of bile salts between 1-octanol and aqueous buffer . J Pharm Sci. 1982;71(8):875–881.
  • Poša M , Ćirin D , Krstonošić V. Physico-chemical properties of bile salt-Tween 80 mixed micelles in the viewpoint of regular solution theory. Chem Eng Sci. 2013;98:195–202.
  • Maher S , Leonard TW , Jacobsen J , et al. Safety and efficacy of sodium caprate in promoting oral drug absorption: from in vitro to the clinic. Adv Drug Deliv Rev. 2009;61(15):1427–1449.
  • Ainousah BE , Perrier J , Dunn C , et al. Dual level statistical investigation of equilibrium solubility in simulated fasted and fed intestinal fluid. Mol Pharm. 2017;12:4170–4180.
  • Persson EM , Gustafsson AS , Carlsson AS , et al. The effects of food on the dissolution of poorly soluble drugs in human and in model small intestinal fluids. Pharm. Res. 2005;22(12):2141–2151.
  • Rogerson ML , Robinson BH , Bucak S , et al. Kinetic studies of the interaction of fatty acids with phosphatidylcholine vesicles (liposomes). Colloids Surf B Biointerfaces. 2006;48(1):24–34.
  • Muhamad R , Misran M. Adsorption kinetics of partially ionized fatty acids at oil/water interface of their monomeric and liposomal solution. Colloids Surfaces A Physicochem. Eng. Asp. 2017;528:23–29. https://doi.org/10.1016/j.colsurfa.2017.04.040.
  • Beaman DK , Robertson EJ , Richmond GL. From head to tail: structure, solvation, and hydrogen bonding of carboxylate surfactants at the organic-water interface. J Phys Chem C. 2011;115(25):12508–12516.
  • Ding Z , Jiang Y , Liu X. Chapter 12 - Nanoemulsions-based drug delivery for brain tumors. In: Kesharwani P , Gupta BT , editors. Nanotechnology-based targeted drug delivery systems for brain tumors. Elsevier; 2018. p. 327–358. https://doi.org/10.1016/B978-0-12-812218-1.00012-9.
  • Polychniatou V , Tzia C. Study of formulation and stability of co-surfactant free water-in-olive oil nano- and submicron emulsions with food grade non-ionic surfactants, JAOCS. J Am Oil Chem Soc. 2014;91(1):79–88.
  • Al-Sabagh AM , Nasser NM , Migahed MA , et al. Effect of chemical structure on the cloud point of some new non-ionic surfactants based on bisphenol in relation to their surface active properties. Egypt. J. Pet. 2011;20(2):59–66.
  • Schott H , Han SK. Effect of symmetrical tetraalkylammonium salts on cloud point on nonionic surfactants. J Pharm Sci. 1977;66(2):165–168. https://doi.org/https://doi.org/10.1002/jps.2600660208.
  • Walsh D. Microemulsions. Background, new concepts, applications, perspectives. Edited by Cosima Stubenrauch. Angew Chem Int Ed. 2009;48(25):4474–4474.
  • Kumar S , Sharma D , Khan ZA. Kabir-ud-Din, Salt-induced cloud point in anionic surfactant solutions: Role of the headgroup and additives. Langmuir. 2002;18:4205–4209.
  • Aburahma MH. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv. 2016;23(6):1847–1867.
  • Hu S , Niu M , Hu F , et al. Integrity and stability of oral liposomes containing bile salts studied in simulated and ex vivo gastrointestinal media. Int J Pharm. 2013;441(1-2):693–700.
  • Bunchongprasert K , Shao J. Cytotoxicity and permeability enhancement of Capmul®MCM in nanoemulsion formulation. Int J Pharm. 2019;561:289–295.
  • Krug SM , Amasheh M , Dittmann I , et al. Sodium caprate as an enhancer of macromolecule permeation across tricellular tight junctions of intestinal cells. Biomaterials. 2013;34(1):275–282.
  • Stojančević M , Pavlović N , Goločorbin-Kon S , et al. Application of bile acids in drug formulation and delivery. Front Life Sci. 2013;7(3–4):112–122.
  • Griesser J , Hetényi G , Federer C , et al. Highly mucus permeating and zeta potential changing self-emulsifying drug delivery systems: a potent gene delivery model for causal treatment of cystic fibrosis. Int J Pharm. 2019;557:124–134.
  • Wu J , Zheng Y , Liu M , et al. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl Mater Interfaces. 2018;10(12):9916–9928.