301
Views
19
CrossRef citations to date
0
Altmetric
Research Articles

Glycyrrhizic acid-based self-assembled micelles for improving oral bioavailability of paeoniflorin

, , , , &
Pages 207-214 | Received 30 Sep 2020, Accepted 07 Dec 2020, Published online: 16 Dec 2020

References

  • Yan B, Shen M, Fang J, et al. Advancement in the chemical analysis of Paeoniae Radix (Shaoyao). J Pharm Biomed Anal. 2018;160:276–288.
  • Tan YQ, Chen HW, Li J, et al. Efficacy, chemical constituents, and pharmacological actions of Radix Paeoniae Rubra and Radix Paeoniae Alba. Front Pharmacol. 2020;11:1054.
  • Jiang H, Li J, Wang L, et al. Total glucosides of paeony: a review of its phytochemistry, role in autoimmune diseases, and mechanisms of action. J Ethnopharmacol. 2020;258:112913.
  • Zhang L, Yu J, Wang C, et al. The effects of total glucosides of paeony (TGP) and paeoniflorin (Pae) on inflammatory-immune responses in rheumatoid arthritis (RA). Funct Plant Biol. 2019;46:107–117.
  • Zheng Q, Jiang W, Sun X, et al. Total glucosides of paeony for the treatment of psoriasis: a systematic review and meta-analysis of randomized controlled trials. Phytomedicine. 2019;62:152940.
  • Yu C, Fan X, Li Z, et al. Efficacy and safety of total glucosides of paeony combined with acitretin in the treatment of moderate-to-severe plaque psoriasis: a double-blind, randomised, placebo-controlled trial. Eur J Dermatol. 2017;27:150–154.
  • Zhao Z, Han Y, Zhang Z, et al. Total glucosides of paeony improves the immunomodulatory capacity of MSCs partially via the miR-124/STAT3 pathway in oral lichen planus. Biomed Pharmacother. 2018;105:151–158.
  • Zhou L, Cao T, Wang Y, et al. Clinical observation on the treatment of oral lichen planus with total glucosides of paeony capsule combined with corticosteroids. Int Immunopharmacol. 2016;36:106–110.
  • Wang Y, Zhang H, Du G, et al. Total glucosides of paeony (TGP) inhibits the production of inflammatory cytokines in oral lichen planus by suppressing the NF-κB signaling pathway . Int Immunopharmacol. 2016;36:67–72.
  • Liu G, Wang Z, Li X, et al. Total glucosides of paeony (TGP) alleviates constipation and intestinal inflammation in mice induced by Sjögren’s syndrome. J Ethnopharmacol. 2020;260:113056.
  • Li B, Liu G, Liu R, et al. Total glucosides of paeony (TGP) alleviates Sjogren’s syndrome through inhibiting inflammatory responses in mice. Phytomedicine. 2020;71:153203.
  • Yin D, Liu YY, Wang TX, et al. Paeoniflorin exerts analgesic and hypnotic effects via adenosine A1 receptors in a mouse neuropathic pain model. Psychopharmacology (Berl). 2016;233:281–293.
  • Ouyang J, Xu H, Li M, et al. Paeoniflorin exerts antitumor effects by inactivating S phase kinase-associated protein 2 in glioma cells. Oncol Rep. 2018;39:1052–1062.
  • Ngo T, Kim K, Bian Y, et al. Antithrombotic effects of paeoniflorin from Paeonia suffruticosa by selective inhibition on shear stress-induced platelet aggregation. IJMS. 2019;20:5040.
  • Song S, Xiao X, Guo D, et al. Protective effects of Paeoniflorin against AOPP-induced oxidative injury in HUVECs by blocking the ROS-HIF-1α/VEGF pathway. Phytomedicine. 2017;34:115–126.
  • Kong Y, Peng Q, Lv N, et al. Paeoniflorin exerts neuroprotective effects in a transgenic mouse model of Alzheimer’s disease via activation of adenosine A1 receptor. Neurosci Lett. 2020;730:135016.
  • Chen A, Wang H, Zhang Y, et al. Paeoniflorin exerts neuroprotective effects against glutamate-induced PC12 cellular cytotoxicity by inhibiting apoptosis. Int J Mol Med. 2017;40:825–833.
  • Takeda S, Isono T, Wakui Y, et al. Absorption and excretion of paeoniflorin in rats. J Pharm Pharmacol. 1995;47:1036–1040.
  • Wang C, Yuan J, Zhang LL, et al. Pharmacokinetic comparisons of paeoniflorin and paeoniflorin-6'O-benzene sulfonate in rats via different routes of administration. Xenobiotica. 2016;46:1142–1150.
  • Liu ZQ, Jiang ZH, Liu L, et al. Mechanisms responsible for poor oral bioavailability of paeoniflorin: role of intestinal disposition and interactions with sinomenine. Pharm Res. 2006;23:2768–2780.
  • Qian J, Cheng W, Zhang C, et al. Preparation, physicochemical characterization and pharmacokinetics of paeoniflorin-phospholipid complex. Biomed Mater Eng. 2019;30:11–22.
  • Qiu L, Yin RL, Shen BD, et al. Preparation of paeoniflorin lipid liquid crystalline nanoparticles and its in vitro release. Zhong Cao Yao. 2015;46:3495–3499.
  • Teng S, Qiu L, Chen HG, et al. Analysis on intestinal absorption of paeoniflorin lipid liquid crystalline nanoparticles via everted intestinal sacs. Zhongguo Zhong Yao Za Zhi. 2016;41:3674–3678.
  • Wang C, Yuan J, Yang ZY, et al. Pharmacokinetics of paeoniflorin microemulsion after repeated dosing in rats with adjuvant arthritis. Pharmazie. 2012;67:997–1001.
  • Zhang K, Zhang Y, Li Z, et al. Essential oil-mediated glycerosomes increase transdermal paeoniflorin delivery: optimization, characterization, and evaluation in vitro and in vivo. Int J Nanomedicine. 2017;12:3521–3532.
  • Cui Y, Mo Y, Zhang Q, et al. Microneedle-assisted percutaneous delivery of paeoniflorin-loaded ethosomes. Molecules. 2018;23:3371.
  • Jiang M, Zhao S, Yang S, et al. An “essential herbal medicine”-licorice: A review of phytochemicals and its effects in combination preparations. J Ethnopharmacol. 2020;249:112439.
  • Bi X, Gong M, Di L. Review on prescription compatibility of shaoyao gancao decoction and reflection on pharmacokinetic compatibility mechanism of traditional chinese medicine prescription based on in vivo drug interaction of main efficacious components. Evid Based Complement Alternat Med. 2014;2014:208129.
  • Zhu N, Hou J, Ma G, et al. Network pharmacology identifies the mechanisms of action of Shaoyao Gancao decoction in the treatment of osteoarthritis. Med Sci Monit. 2019;25:6051–6073.
  • Sui F, Zhou HY, Meng J, et al. A Chinese herbal decoction, Shaoyao-Gancao Tang, exerts analgesic effect by down-regulating the TRPV1 channel in a rat model of arthritic pain. Am J Chin Med. 2016;44:1363–1378.
  • Guan YG, Liao JB, Li KY, et al. Potential mechanisms of an antiadenomyosis chinese herbal formula Shaoyao-Gancao decoction in primary cell culture model. Evid Based Complement Alternat Med. 2014;2014:982913.
  • Chen K, Yang R, Shen F, et al. Advances in pharmacological activities and mechanisms of glycyrrhizic acid. Curr Med Chem. 2020;27:6219–6243.
  • Li JY, Cao HY, Liu P, et al. Glycyrrhizic acid in the treatment of liver diseases: literature review. Biomed Res Int. 2014;2014:872139.
  • Selyutina OY, Polyakov NE. Glycyrrhizic acid as a multifunctional drug carrier – from physicochemical properties to biomedical applications: a modern insight on the ancient drug. Int J Pharm. 2019;559:271–279.
  • Hussain M. Molecular dynamics simulations of glycyrrhizic acid aggregates as drug-carriers for paclitaxel. Curr Drug Deliv. 2019;16:618–627.
  • Su X, Wu L, Hu M, et al. Glycyrrhizic acid: a promising carrier material for anticancer therapy. Biomed Pharmacother. 2017;95:670–678.
  • Wang Y, Zhao B, Wang S, et al. Formulation and evaluation of novel glycyrrhizic acid micelles for transdermal delivery of podophyllotoxin. Drug Deliv. 2016;23:1623–1635.
  • Yang FH, Zhang Q, Liang QY, et al. Bioavailability enhancement of paclitaxel via a novel oral drug delivery system: paclitaxel-loaded glycyrrhizic acid micelles. Molecules. 2015;20:4337–4356.
  • Selyutina OY, Polyakov NE, Korneev DV, et al. Influence of glycyrrhizin on permeability and elasticity of cell membrane: perspectives for drugs delivery. Drug Deliv. 2016;23:858–865.
  • Ajazuddin Alexander A, Qureshi A, et al. Role of herbal bioactives as a potential bioavailability enhancer for Active Pharmaceutical Ingredients. Fitoterapia. 2014;97:1–14.
  • Chen L, Yang J, Davey AK, et al. Effects of diammonium glycyrrhizinate on the pharmacokinetics of aconitine in rats and the potential mechanism. Xenobiotica. 2009;39:955–963.
  • Yoshida N, Koizumi M, Adachi I, et al. Inhibition of P-glycoprotein-mediated transport by terpenoids contained in herbal medicines and natural products. Food Chem Toxicol. 2006;44:2033–2039.
  • Bhattacharjee A, Majumder S, Majumdar SB, et al. Co-administration of glycyrrhizic acid with the antileishmanial drug sodium antimony gluconate (SAG) cures SAG-resistant visceral leishmaniasis. Int J Antimicrob Agents. 2015; 45:268–277.
  • Qiao X, Wang Q, Wang S, et al. A 42-markers pharmacokinetic study reveals interactions of berberine and glycyrrhizic acid in the anti-diabetic Chinese medicine formula Gegen-Qinlian decoction. Front Pharmacol. 2018;9:622.
  • Yang Y. Research on pharmacokinetics and analgesic activity of paeoniflorin and glycyrrhizic acid by different administration routes. Dalian University of Technology; 2011.
  • Yang XD, Wang C, Zhou P, et al. Absorption characteristic of paeoniflorin-6'-O-benzene sulfonate (CP-25) in in situ single-pass intestinal perfusion in rats. Xenobiotica. 2016;46:775–783.
  • Konnova TA, Faizullin DA, Haertle T, et al. β-casein micelle formation in water-ethanol solutions. Dokl Biochem Biophys. 2013;448:36–39.
  • Piazzini V, D’Ambrosio M, Luceri C, et al. Formulation of nanomicelles to improve the solubility and the oral absorption of silymarin. Molecules. 2019;24:1688.
  • Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–2722.
  • Thanitwatthanasak S, Sagis L, Chitprasert P. Pluronic F127/pluronic P123/vitamin E TPGS mixed micelles for oral delivery of mangiferin and quercetin: mixture-design optimization, micellization, and solubilization behavior. J Mol Liq. 2019;274:223–238.
  • Jin SX, Jin SY, Lv QY, et al. Mixed nanomicelles loaded with thymopeptides-sodium deoxycholate/phospholipid improve drug absorption. Chin J Nat Med. 2014;12:65–70.
  • Sun C, Li W, Ma P, et al. Development of TPGS/F127/F68 mixed polymeric micelles: enhanced oral bioavailability and hepatoprotection of syringic acid against carbon tetrachloride-induced hepatotoxicity. Food Chem Toxicol. 2020;137:111126.
  • Shen C, Zhu J, Song J, et al. Formulation of pluronic F127/TPGS mixed micelles to improve the oral absorption of glycyrrhizic acid. Drug Dev Ind Pharm. 2020;46:1100–1107.
  • Chen X, Chen J, Li B, et al. PLGA-PEG-PLGA triblock copolymeric micelles as oral drug delivery system: in vitro drug release and in vivo pharmacokinetics assessment. J Colloid Interface Sci. 2017;490:542–552.
  • Sutton SC, Rinaldi MT, Vukovinsky KE. Comparison of the gravimetric, phenol red, and 14C-PEG-3350 methods to determine water absorption in the rat single-pass intestinal perfusion model. AAPS Pharmsci. 2001;3:E25.
  • Wang J, Ma W, Tu P. The mechanism of self-assembled mixed micelles in improving curcumin oral absorption: in vitro and in vivo. Colloids Surf B Biointerfaces. 2015;133:108–119.
  • Ma Y, He H, Fan W, et al. In vivo fate of biomimetic mixed micelles as nanocarriers for bioavailability enhancement of lipid–drug conjugates. ACS Biomater Sci Eng. 2017;3:2399–2409.
  • Zhang J, Li J, Ju Y, et al. Mechanism of enhanced oral absorption of morin by phospholipid complex based self-nanoemulsifying drug delivery system. Mol Pharm. 2015;12:504–513.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.