896
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Medical application of biomimetic 4D printing

, , & ORCID Icon
Pages 521-534 | Received 30 Apr 2020, Accepted 16 Nov 2020, Published online: 15 Apr 2021

References

  • Mota C, Puppi D, Chiellini F, et al. Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med. 2015;9(3):174–190.
  • ACF on AM Technologies and ACF on AMTSF 91 on Terminology. Standard terminology for additive manufacturing technologies. USA: ASTM International; 2012.
  • Rafiee M, Farahani RD, Therriault D. Multi‐material 3D and 4D printing: a survey. Adv Sci (Weinh). 2020;7(12):1902307.
  • King W, Anderson AT, Ferencz RM, et al. Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater Sci Technol. 2015;31(8):957–968.
  • Gokuldoss PK, Kolla S, Eckert J. Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting—Selection guidelines. Materials (Basel). 2017;10(6):672.
  • Gibson I, Rosen DW, Stucker B. Sheet lamination processes. In: Gibson I , Rosen DW, Stucker B, editors. Additive Manufacturing Technologies. Boston, MA: Springer; 2010. p. 223–252.
  • Gibson I, Rosen D, Stucker B. Vat photopolymerization processes. In: Gibson I, Rosen DW, Stucker B, editors. Additive manufacturing technologies. Boston (MA): Springer; 2015. p. 63–106.
  • Saboori A, Gallo D, Biamino S, et al. An overview of additive manufacturing of titanium components by directed energy deposition: microstructure and mechanical properties. Appl Sci. 2017;7(9):883.
  • Prakash KS, Nancharaih T, Rao VVS. Additive manufacturing techniques in manufacturing – an overview. Mater Today Proc. 2018;5(2):3873–3882.
  • Ligon SC, Liska R, Stampfl J, et al. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212–10290.
  • Bose S, Ke D, Sahasrabudhe H, et al. Additive manufacturing of biomaterials. Prog Mater Sci. 2018;93:45–111.
  • Ge Q, Sakhaei AH, Lee H, et al. Multimaterial 4D printing with tailorable shape memory polymers. Sci Rep. 2016;6:31110
  • Zhu W, Ma X, Gou M, et al. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol. 2016;40:103–112.
  • Leist SK, Zhou J. Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual Phys Prototyp. 2016;11(4):249–262.
  • Hull CW. “Apparatus for production of three-dimensional objects by stereolithography [patent],” 1986.
  • Koffler J, Zhu W, Qu X, et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med. 2019;25(2):263–269.
  • Girolami M, Boriani S, Bandiera S, et al. Biomimetic 3D-printed custom-made prosthesis for anterior column reconstruction in the thoracolumbar spine: a tailored option following en bloc resection for spinal tumors. Eur Spine J. 2018;27(12):3073–3083.
  • Huang TQ, Qu X, Liu J, et al. 3D printing of biomimetic microstructures for cancer cell migration. Biomed Microdevices. 2014;16(1):127–132.
  • Wang X, Jiang M, Zhou Z, et al. 3D printing of polymer matrix composites: a review and prospective. Compos Part B Eng. 2017;110:442–458.
  • Cho DW, Kim BS, Jang J, et al. 3D bioprinting techniques. In: Cho D-W, Kim BS, Jang J, Gao G, Han W, Singh N, editors. 3D Bioprinting. Switzerland: Springer; 2019. p. 25–29.
  • Jessop ZM, Al-Sabah A, Gardiner MD, et al. 3D bioprinting for reconstructive surgery: principles, applications and challenges. J Plast Reconstr Aesthetic Surg. 2017;70(9):1155–1170.
  • Lenhert S, Sun P, Wang Y, et al. Massively parallel dip‐pen nanolithography of heterogeneous supported phospholipid multilayer patterns. Small. 2007;3(1):71–75.
  • Vafai N, Lowry TW, Wilson KA, et al. Evaporative edge lithography of a liposomal drug microarray for cell migration assays. Nanofabrication. 2015;2(1):34–42.
  • Li Y-C, Zhang YS, Akpek A, et al. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication. 2016;9(1):12001.
  • Blaeser A, Duarte Campos DF, Puster U, et al. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater. 2016;5(3):326–333.
  • Hu Q, Jiang B, Zhang H. Method for novel 3d bioprinting of gradient scaffold for osteochondral regeneration using a coaxial multi-nozzle and software. J Biomater Tissue Eng. 2019;9(1):24–31.
  • Lui YS, Sow WT, Tan LP, et al. 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater. 2019;92:19–36.
  • Piedade AP. 4D printing: the shape-morphing in additive manufacturing. JFB. 2019;10(1):9.
  • Wu J-J, Huang L-M, Zhao Q, et al. 4D printing: history and recent progress. Chin J Polym Sci. 2018;36(5):563–575.
  • Choong YYC, Maleksaeedi S, Eng H, et al. 4D printing of high performance shape memory polymer using stereolithography. Mater Des. 2017;126:219–225.
  • Wei H, Zhang Q, Yao Y, et al. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl Mater Interfaces. 2017;9(1):876–883.
  • Bakarich SE, Gorkin R, III, In Het Panhuis M, et al. 4D printing with mechanically robust, thermally actuating hydrogels. Macromol Rapid Commun. 2015;36(12):1211–1217.
  • Shin D-G, Kim T-H, Kim D-E. Review of 4D printing materials and their properties. Int J of Precis Eng and Manuf-Green Tech. 2017;4(3):349–357.
  • Lee AY, An J, Chua CK. Two-way 4D printing: a review on the reversibility of 3D-printed shape memory materials. Engineering. 2017;3(5):663–674.
  • Iqbal D, Samiullah MH. Photo-responsive shape-memory and shape-changing liquid-crystal polymer networks. Materials (Basel). 2013;6(1):116–142.
  • Momeni F, M.Mehdi Hassani.N S, Liu X, et al. A review of 4D printing. Mater Des. 2017;122:42–79.
  • Kowalski PS, Bhattacharya C, Afewerki S, et al. Smart biomaterials: recent advances and future directions. ACS Biomater Sci Eng. 2018;4(11):3809–3817.
  • Tamay DG, Usal TD, Alagoz AS, et al. 3D and 4D printing of polymers for tissue engineering applications. Front Bioeng Biotechnol. 2019;7:164.
  • Zhou J, Sheiko SS. Reversible shape‐shifting in polymeric materials. J Polym Sci Part B: Polym Phys. 2016;54(14):1365–1380.
  • Yuejia L, Fenghua Z, Yanju L, et al. 4D printed shape memory polymers and their structures for biomedical applications. Sci China Technol Sci. 63:545–560.
  • Zhang K, Wang S, Zhou C, et al. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res. 2018;6(1):1–15.
  • Bandyopadhyay A, Bose S. Characterization of biomaterials. Amsterdam: Elsevier; 2013.
  • Zhou Y, Huang WM, Kang SF, et al. From 3D to 4D printing: approaches and typical applications. J Mech Sci Technol. 2015;29(10):4281–4288.
  • Otsuka K, Wayman CM. Shape memory materials. Cambridge: Cambridge University Press; 1999.
  • Wang K, Strandman S, Zhu XX. A mini review: Shape memory polymers for biomedical applications. Front Chem Sci Eng. 2017;11(2):143–153.
  • Lendlein A, Behl M. Shape-memory polymers for biomedical applications. AST. 2008;54:96–102.
  • Joshi S, Rawat K, C K, et al. 4D printing of materials for the future: Opportunities and challenges. Appl Mater Today. 2020;18:100490.
  • Hager MD, Bode S, Weber C, et al. Shape memory polymers: past, present and future developments. Prog. Polym. Sci. 2015;49-50:3–33.
  • Kim Y-J, Matsunaga YT. Thermo-responsive polymers and their application as smart biomaterials. J Mater Chem B. 2017;5(23):4307–4321.
  • Furth ME, Atala A, Van Dyke ME. Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials. 2007;28(34):5068–5073.
  • Kazanci M. A review of polymeric smart materials for biomedical applications. Mater Technol. 2003;18(2):87–93.
  • Meyer W, Engelhardt S, Novosel E, et al. Soft polymers for building up small and smallest blood supplying systems by stereolithography. J Funct Biomater. 2012;3(2):257–268.
  • Zhang F, Zhou T, Liu Y, et al. Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed. Sci Rep. 2015;5:11152.
  • Salmoria GV, Klauss P, Zepon KM, et al. The effects of laser energy density and particle size in the selective laser sintering of polycaprolactone/progesterone specimens: morphology and drug release. Int J Adv Manuf Technol. 2013;66(5-8):1113–1118.
  • Zarek M, Mansour N, Shapira S, et al. 4D printing of shape memory‐based personalized endoluminal medical devices. Macromol Rapid Commun. 2017;38(2):1600628.
  • Miao S, Zhu W, Castro NJ, et al. Four-dimensional printing hierarchy scaffolds with highly biocompatible smart polymers for tissue engineering applications. Tissue Eng Part C Methods. 2016;22(10):952–963.
  • Hendrikson WJ, Rouwkema J, Clementi F, et al. Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication. 2017;9(3):031001.
  • Cabrera MS, Sanders B, Goor OJGM, et al. Computationally designed 3D printed self-expandable polymer stents with biodegradation capacity for minimally invasive heart valve implantation: A proof-of-concept study. 3D Print Addit Manuf. 2017;4(1):19–29.
  • Wan X, Wei H, Zhang F, et al. 3D printing of shape memory poly (d, l‐lactide‐co‐trimethylene carbonate) by direct ink writing for shape‐changing structures. J Appl Polym Sci. 2019;136(44):48177.
  • Melocchi A, Inverardi N, Uboldi M, et al. Retentive device for intravesical drug delivery based on water-induced shape memory response of poly (vinyl alcohol): design concept and 4D printing feasibility. Int J Pharm. 2019;559:299–311.
  • Melocchi A, Uboldi M, Inverardi N, et al. Expandable drug delivery system for gastric retention based on shape memory polymers: Development via 4D printing and extrusion. Int J Pharm. 2019;571:118700.
  • Morrison RJ, Hollister SJ, Niedner MF, et al. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med. 2015;7(285):285ra64–285ra64.
  • Miao S, et al. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci Rep. 2016;6:27226.
  • Gioumouxouzis CI, Tzimtzimis E, Katsamenis OL, et al. Fabrication of an osmotic 3D printed solid dosage form for controlled release of active pharmaceutical ingredients. Eur J Pharm Sci. 2020;143:105176.
  • Yoon C, Xiao R, Park J, et al. Functional stimuli responsive hydrogel devices by self-folding. Smart Mater Struct. 2014;23(9):94008.
  • Luo R, Wu J, Dinh N, et al. Gradient porous elastic hydrogels with shape‐memory property and anisotropic responses for programmable locomotion. Adv Funct Mater. 2015;25(47):7272–7279.
  • Breger JC, Yoon CKyu, Xiao R, et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl Mater Interfaces. 2015;7(5):3398–3405.
  • Larush L, Kaner I, Fluksman A, et al. 3D printing of responsive hydrogels for drug-delivery systems. J 3D Print Med. 2017;1(4):219–229.
  • Hsiao S-H, Hsu S. Synthesis and characterization of dual stimuli-sensitive biodegradable polyurethane soft hydrogels for 3D cell-laden bioprinting. ACS Appl Mater Interfaces. 2018;10(35):29273–29287.
  • Guo J, Zhang R, Zhang L, et al. 4D printing of robust hydrogels consisted of agarose nanofibers and polyacrylamide. ACS Macro Lett. 2018;7(4):442–446.
  • Ceylan H, Yasa IC, Yasa O, et al. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano. 2019;13(3):3353–3362.
  • Liu J, Erol O, Pantula A, et al. Dual-gel 4D printing of bioinspired tubes. ACS Appl Mater Interfaces. 2019;11(8):8492–8498.
  • Dávila JL, d’Ávila MA. Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing. Int J Adv Manuf Technol. 2019;101(1-4):675–686.
  • Peak CW, Stein J, Gold KA, et al. Nanoengineered colloidal inks for 3D bioprinting. Langmuir. 2018;34(3):917–925.
  • Ge Q, Qi HJ, Dunn ML. Active materials by four-dimension printing. Appl Phys Lett. 2013;103(13):131901.
  • Senatov FS, Niaza KV, Zadorozhnyy MY, et al. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater. 2016;57:139–148.
  • Senatov FS, Zadorozhnyy MY, Niaza KV, et al. Shape memory effect in 3D-printed scaffolds for self-fitting implants. Eur Polym J. 2017;93:222–231.
  • Kuang X, Chen K, Dunn CK, et al. 3D printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing. ACS Appl Mater Interfaces. 2018;10(8):7381–7388.
  • Zhang F, Wang L, Zheng Z, et al. Magnetic programming of 4D printed shape memory composite structures. Amsterdam: Elsevier; 2019.
  • Cui H, Miao S, Esworthy T, et al. A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation. Nano Res. 2019;12(6):1381–1388.
  • Su J-W, Gao W, Trinh K, et al. 4D printing of polyurethane paint-based composites. Int J Smart Nano Mater. 2019;10(3):237–248.
  • Lin C, Lv J, Li Y, et al. 4D‐printed biodegradable and remotely controllable shape memory occlusion devices. Adv Funct Mater. 2019;29(51):1906569.
  • Yoneyama T, Miyazaki S. Shape memory alloys for biomedical applications. Amsterdam: Elsevier; 2008.
  • Yahia L, Manceur A, Chaffraix P. Bioperformance of shape memory alloy single crystals. Biomed Mater Eng. 2006;16(2):101–118.
  • Guo W. Orthopaedic applications of ferromagnetic shape memory alloys. Boston: Massachusetts Institute of Technology; 2008.
  • Hannula SP, Söderberg O, Jämsä T, et al. Shape memory alloys for biomedical applications. AST. 2006;49:109–118.
  • Caputo MP, Berkowitz AE, Armstrong A, et al. 4D printing of net shape parts made from Ni-Mn-Ga magnetic shape-memory alloys. Addit Manuf. 2018;21:579–588.
  • Dadbakhsh S, Speirs M, Van Humbeeck J, et al. Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: From processes to potential biomedical applications. MRS Bull. 2016;41(10):765–774.
  • Shishkovskii IV, Yadroitsev IA, Smurov IY. Selective laser sintering/melting of nitinol–hydroxyapatite composite for medical applications. Powder Metall Met Ceram. 2011;50(5-6):275–283.
  • Andani MT, et al. Mechanical and shape memory properties of porous Ni50. 1Ti49. 9 alloys manufactured by selective laser melting. J Mech Behav Biomed Mater. 2017;68:224–231.
  • Lu HZ, Yang C, Luo X, et al. Ultrahigh-performance TiNi shape memory alloy by 4D printing. Mater Sci Eng A. 2019;763:138166.
  • González-Henríquez CM, Sarabia-Vallejos MA, Rodriguez-Hernandez J. Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Prog Polym Sci. 2019;94:57–116.
  • Choi J, Kwon O-C, Jo W, et al. 4D printing technology: a review. 3D Print. Addit Manuf. 2015;2(4):159–167.
  • Javaid M, Haleem A. 4D printing applications in medical field: a brief review. Clin Epidemiol Glob Heal. 2019;7(3):317–321.
  • Gao B, Yang Q, Zhao X, et al. 4D bioprinting for biomedical applications. Trends Biotechnol. 2016;34(9):746–756.
  • Khoo ZX, Teoh JEM, Liu Y, et al. 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual Phys Prototyp. 2015;10(3):103–122.
  • Meier H, Haberland C, Frenzel J, et al. Selective Laser Melting of NiTi shape memory components. In: Innovative developments in design and manufacturing. Florida: CRC Press; 2009. p. 251–256.
  • Meier H, Haberland C, Frenzel J. Structural and functional properties of NiTi shape memory alloys produced by selective laser melting. In: Innovative developments in design and manufacturing advanced research in virtual and rapid prototyping. Leiria: CRC Press; 2011. p. 291–296.
  • Yaws CL. Chapter 66 Ni-Nickel. In: Yaws' handbook of properties of the chemical elements. New York: Knovel; 2011. p. 271–274.
  • Yaws CL. Chapter 103 Ti-Titanium. In: Yaws' handbook of properties of the chemical elements. Washington: Knovel; 2011. p. 420–424.
  • Zou W, Dong J, Luo Y, et al. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv Mater. 2017;29(14):1606100.
  • Miao J-T, Ge M, Peng S, et al. Dynamic imine bond-based shape memory polymers with permanent shape reconfigurability for 4D printing. ACS Appl Mater Interfaces. 2019;11(43):40642–40651.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.