724
Views
16
CrossRef citations to date
0
Altmetric
Review Article

A mechanistic review on the dissolution phase behavior and supersaturation stabilization of amorphous solid dispersions

, & ORCID Icon
Pages 1-11 | Received 29 Sep 2020, Accepted 12 Jan 2021, Published online: 05 Feb 2021

References

  • Taylor LS , Zhang GGZ. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv Drug Deliv Rev. 2016;101:122–142.
  • Leuner C , Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.
  • Vidhya KM , Saranya TR , Sreelakshmy KR , et al. Pharmaceutical solid dispersion technology: a promising tool to enhance oral bioavailability. Int Res J Pharm Appl Sci. 2013;3:214–218.
  • Viswanad V , Shammika P , Aneesh TP. Solubility enhancement of synthesized quinazolinone derivative by solid dispersion technique. Int J Pharm Sci Rev Res. 2016;41:197–206.
  • Jermain SV , Brough C , Williams RO. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery – an update. Int J Pharm. 2018;535:379–392.
  • Dahan A , Beig A , Ioffe-Dahan V , et al. The twofold advantage of the amorphous form as an oral drug delivery practice for lipophilic compounds: increased apparent solubility and drug flux through the intestinal membrane. AAPS J. 2013;15:347–353.
  • Miller JM , Beig A , Carr RA , et al. A win-win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Mol Pharm. 2012;9:2009–2016.
  • Butler JM , Dressman JB. The developability classification system: application of biopharmaceutics concepts to formulation development. J Pharm Sci. 2010;99:4940–4954.
  • Jog R , Burgess DJ. Pharmaceutical Amorphous Nanoparticles. J Pharm Sci. 2017;106:39–65.
  • Solanki NG , Gumaste SG , Shah AV , et al. Effects of surfactants on itraconazole-hydroxypropyl methylcellulose acetate succinate solid dispersion prepared by hot melt extrusion. II: rheological analysis and extrudability testing. J Pharm Sci. 2019;108:3063–3073.
  • Tran P , Pyo YC , Kim DH , et al. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics. 2019;11:132.
  • Li N , Taylor LS. Tailoring supersaturation from amorphous solid dispersions. J Control Release. 2018;279:114–125.
  • Purohit HS , Trasi NS , Osterling DJ , et al. Assessing the impact of endogenously derived crystalline drug on the in vivo performance of amorphous formulations. Mol Pharm. 2019;16:3617–3625.
  • Sun DD , Lee PI. Evolution of supersaturation of amorphous pharmaceuticals: the effect of rate of supersaturation generation. Mol Pharm. 2013;10:4330–4346.
  • Bevernage J , Brouwers J , Brewster ME , et al. Evaluation of gastrointestinal drug supersaturation and precipitation: strategies and issues. Int J Pharm. 2013;453:25–35.
  • Sun DD , Wen H , Taylor LS. Non-sink dissolution conditions for predicting product quality and in vivo performance of supersaturating drug delivery systems. J Pharm Sci. 2016;105:2477–2488.
  • Han YR , Lee PI. Effect of extent of supersaturation on the evolution of kinetic solubility profiles. Mol Pharm. 2017;14:206–220.
  • Bevernage J , Brouwers J , Annaert P , et al. Drug precipitation-permeation interplay: supersaturation in an absorptive environment. Eur J Pharm Biopharm. 2012;82:424–428.
  • Wilson V , Lou X , Osterling DJ , et al. Relationship between amorphous solid dispersion in vivo absorption and in vitro dissolution: phase behavior during dissolution, speciation, and membrane mass transport. J Control Release. 2018;292:172–182.
  • Indulkar AS , Gao Y , Raina SA , et al. Exploiting the phenomenon of liquid-liquid phase separation for enhanced and sustained membrane transport of a poorly water-soluble drug. Mol Pharm. 2016;13:2059–2069.
  • Hate SS , Reutzel-Edens SM , Taylor LS. Insight into amorphous solid dispersion performance by coupled dissolution and membrane mass transfer measurements. Mol Pharm. 2019;16:448–461.
  • Li N , Taylor LS. Microstructure formation for improved dissolution performance of lopinavir amorphous solid dispersions. Mol Pharm. 2019;16:1751–1765.
  • Johnson LM , Li Z , LaBelle AJ , et al. Impact of polymer excipient molar mass and end groups on hydrophobic drug solubility enhancement. Macromolecules. 2017;50:1102–1112.
  • Li Z , Johnson LM , Ricarte RG , et al. Enhanced performance of blended polymer excipients in delivering a hydrophobic drug through the synergistic action of micelles and HPMCAS. Langmuir. 2017;33:2837–2848.
  • Li Z , Lenk TI , Yao LJ , et al. Maintaining hydrophobic drug supersaturation in a micelle corona reservoir. Macromolecules. 2018;51:540–551.
  • Dalsin MC , Tale S , Reineke TM. Solution-state polymer assemblies influence BCS class II drug dissolution and supersaturation maintenance. Biomacromolecules. 2014;15:500–511.
  • Indulkar AS , Box KJ , Taylor R , et al. pH-Dependent liquid-liquid phase separation of highly supersaturated solutions of weakly basic drugs. Mol Pharm. 2015;12:2365–2377.
  • Mosquera-Giraldo LI , Taylor LS. Glass-liquid phase separation in highly supersaturated aqueous solutions of telaprevir. Mol Pharm. 2015;12:496–503.
  • Jackson MJ , Kestur US , Hussain MA , et al. Dissolution of danazol amorphous solid dispersions: supersaturation and phase behavior as a function of drug loading and polymer type. Mol Pharm. 2016;13:223–231.
  • Matteucci ME , Brettmann BK , Rogers TL , et al. Design of potent amorphous drug nanoparticles for rapid generation of highly supersaturated media. Mol Pharm. 2007;4:782–793.
  • Ilevbare GA , Liu H , Pereira J , et al. Influence of additives on the properties of nanodroplets formed in highly supersaturated aqueous solutions of ritonavir. Mol Pharm. 2013;10:3392–3403.
  • Raina SA , Zhang GGZ , Alonzo DE , et al. Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water soluble drugs. J Pharm Sci. 2014;103:2736–2748.
  • Stewart AM , Grass ME , Mudie DM , Morgen MM , et al. Development of a biorelevant, material-sparing membrane flux test for rapid screening of bioavailability-enhancing drug product formulations. Mol Pharm. 2017;14:2032–2046.
  • Jackson MJ , Toth SJ , Kestur US , et al. Impact of polymers on the precipitation behavior of highly supersaturated aqueous danazol solutions. Mol Pharm. 2014;11:3027–3038.
  • Raina SA , Eerdenbrugh B , Van Alonzo DE , et al. Trends in the precipitation and crystallization behavior of supersaturated aqueous solutions of poorly water-soluble drugs assessed using synchrotron radiation. J Pharm Sci. 2015;104:1981–1992.
  • Chen Y , Liu C , Chen Z , et al. Drug-polymer-water interaction and its implication for the dissolution performance of amorphous solid dispersions. Mol Pharm. 2015;12:576–589.
  • Purohit HS , Taylor LS. Phase behavior of ritonavir amorphous solid dispersions during hydration and dissolution. Pharm Res. 2017;34:2842–2861.
  • Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231:131–144.
  • Indulkar AS , Lou X , Zhang GGZ , et al. Insights into the dissolution mechanism of ritonavir-copovidone amorphous solid dispersions: Importance of congruent release for enhanced performance. Mol Pharm. 2019;16:1327–1339.
  • Saboo S , Mugheirbi NA , Zemlyanov DY , et al. Congruent release of drug and polymer: a “sweet spot” in the dissolution of amorphous solid dispersions. J Control Release. 2019;298:68–82.
  • Li Z , Van Zee NJ , Bates FS , et al. Polymer nanogels as reservoirs to inhibit hydrophobic drug crystallization. ACS Nano. 2019;13:1232–1243.
  • Schver GCRM , Lee PI. Combined effects of supersaturation rates and doses on the kinetic-solubility profiles of amorphous solid dispersions based on water-insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels. Mol Pharm. 2018;15:2017–2026.
  • Sun DD , Lee PI. Crosslinked hydrogels – a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs. Acta Pharm Sin B. 2014;4:26–36.
  • Schver GCRM , Nadvorny D , Lee PI. Evolution of supersaturation from amorphous solid dispersions in water-insoluble polymer carriers: Effects of swelling capacity and interplay between partition and diffusion. Int J Pharm. 2020;581:119292.
  • Sun DD , Lee PI. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers. J Control Release. 2015;211:85–93.
  • Ricarte RG , Li Z , Johnson LM , et al. Direct observation of nanostructures during aqueous dissolution of polymer/drug particles. Macromolecules. 2017;50:3143–3152.
  • Zhao Z , Katai H , Higashi K , et al. Cryo-TEM and AFM observation of the time-dependent evolution of amorphous probucol nanoparticles formed by the aqueous dispersion of ternary solid dispersions. Mol Pharm. 2019;16:2184–2198.
  • Tres F , Hall SD , Mohutsky MA , et al. Monitoring the phase behavior of supersaturated solutions of poorly water-soluble drugs using fluorescence techniques. J Pharm Sci. 2018;107:94–102.
  • Lu J , Ormes JD , Lowinger M , et al. Impact of bile salts on solution crystal growth rate and residual supersaturation of an active pharmaceutical ingredient. Cryst Growth Des. 2017;17:3528–3537.
  • Bakatselou V , Oppenheim RC , Dressman JB. Solubilization and wetting effects of bile salts on the dissolution of steroids. Pharm Res. 1991;8:1461–1469.
  • Enright EF , Joyce SA , Gahan CGM , et al. Impact of phospholipid digests and bile acid pool variations on the crystallization of atazanavir from supersaturated solutions. Eur J Pharm Biopharm. 2020;153:68–83.
  • Chen J , Mosquera-Giraldo LI , Ormes JD , et al. Bile salts as crystallization inhibitors of supersaturated solutions of poorly water-soluble compounds. Cryst Growth Des. 2015;15:2593–2597.
  • Clulow AJ , Parrow A , Hawley A , et al. Characterization of solubilizing nanoaggregates present in different versions of simulated intestinal fluid. J Phys Chem B. 2017;121:10869–10881.
  • Elkhabaz A , Sarkar S , Simpson GJ , et al. Characterization of phase transformations for amorphous solid dispersions of a weakly basic drug upon dissolution in biorelevant media. Pharm Res. 2019;36:174.
  • Mathias NR , Xu Y , Patel D , et al. Assessing the risk of pH-dependent absorption for new molecular entities: A novel in vitro dissolution test, physicochemical analysis, and risk assessment strategy. Mol Pharm. 2013;10:4063–4073.
  • Xie T , Gao W , Taylor LS. Impact of Eudragit EPO and hydroxypropyl methylcellulose on drug release rate, supersaturation, precipitation outcome and redissolution rate of indomethacin amorphous solid dispersions. Int J Pharm. 2017;531:313–323.
  • Frank KJ , Locher K , Zecevic DE , et al. In vivo predictive mini-scale dissolution for weak bases: advantages of pH-shift in combination with an absorptive compartment. Eur J Pharm Sci. 2014;61:32–39.
  • Pinto JMO , Rengifo AFC , Mendes C , et al. Understanding the interaction between Soluplus® and biorelevant media components. Colloids Surf B Biointerfaces. 2020;187:110673.
  • Xia D , Yu H , Tao J , et al. Supersaturated polymeric micelles for oral cyclosporine A delivery: the role of Soluplus-sodium dodecyl sulfate complex. Colloids Surf B Biointerfaces. 2016;141:301–310.
  • Pigliacelli C , Belton P , Wilde P , et al. Probing the molecular interactions between pharmaceutical polymeric carriers and bile salts in simulated gastrointestinal fluids using NMR spectroscopy. J Colloid Interface Sci. 2019;551:147–154.
  • Suys EJA , Chalmers DK , Pouton CW , et al. Polymeric precipitation inhibitors promote fenofibrate supersaturation and enhance drug absorption from a type IV lipid-based formulation. Mol Pharm. 2018;15:2355–2371.
  • Takemura S , Kondo H , Watanabe S , et al. Aminoalkylmethacrylate copolymer E improves oral bioavailability of YM466 by suppressing drug-bile interaction. J Pharm Sci. 2013;102:3128–3135.
  • Deshpande TM , Shi H , Pietryka J , et al. Investigation of polymer/surfactant interactions and their impact on itraconazole solubility and precipitation kinetics for developing spray-dried amorphous solid dispersions. Mol Pharm. 2018;15:962–974.
  • Qi S , Roser S , Edler KJ , et al. Insights into the role of polymer-surfactant complexes in drug solubilisation/stabilisation during drug release from solid dispersions. Pharm Res. 2013;30:290–302.
  • Hsieh YL , Box K , Taylor LS. Assessing the impact of polymers on the pH-induced precipitation behavior of poorly water soluble compounds using synchrotron wide angle X-Ray scattering. J Pharm Sci. 2014;103:2724–2735.
  • Baird JA , Van Eerdenbrugh B , Taylor LS. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci. 2010;99:3787–3806.
  • Derdour L , Pack SK , Skliar D , et al. Crystallization from solutions containing multiple conformers: A new modeling approach for solubility and supersaturation. Chem Eng Sci. 2011;66:88–102.
  • Khan J , Rades T , Boyd BJ. Lipid-based formulations can enable the model poorly water-soluble weakly basic drug cinnarizine to precipitate in an amorphous-salt form during in vitro digestion. Mol Pharm. 2016;13:3783–3793.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.