280
Views
41
CrossRef citations to date
0
Altmetric
Research Articles

Macrophage targeting with the novel carbopol-based miltefosine-loaded transfersomal gel for the treatment of cutaneous leishmaniasis: in vitro and in vivo analyses

, , ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 440-453 | Received 12 Aug 2020, Accepted 22 Jan 2021, Published online: 01 Mar 2021

References

  • Akbari M, Oryan A, Hatam G. Application of nanotechnology in treatment of leishmaniasis: a review. Acta Trop. 2017;172:86–90.
  • Van Bocxlaer K, Yardley V, Murdan S, et al. Topical formulations of miltefosine for cutaneous leishmaniasis in a BALB/c mouse model. J Pharm Pharmacol. 2016;68(7):862–872.
  • Bruni N, Stella B, Giraudo L, et al. Nanostructured delivery systems with improved leishmanicidal activity: a critical review. Int J Nanomed. 2017;12:5289–5311.
  • Gutiérrez V, Seabra AB, Reguera RM, et al. New approaches from nanomedicine for treating leishmaniasis. Chem Soc Rev. 2016;45(1):152–168.
  • Sundar S, Chakravarty J, Meena LP. Leishmaniasis: treatment, drug resistance and emerging therapies. Expert Opin Orphan Drugs. 2019;7(1):1–10.
  • Das S, Khan W, Mohsin S, et al. Miltefosine loaded albumin microparticles for treatment of visceral leishmaniasis: formulation development and in vitro evaluation. Polym Adv Technol. 2011;22(1):172–179.
  • Sundar S, Chakravarty J. Leishmaniasis: an update of current pharmacotherapy. Expert Opin Pharmacother. 2013;14(1):53–63.
  • Machado PR, Ampuero J, Guimarães LH, et al. Miltefosine in the treatment of cutaneous leishmaniasis caused by Leishmania braziliensis in Brazil: a randomized and controlled trial. PLoS Negl Trop Dis. 2010;4(12):e912.
  • Mohebali M, Fotouhi A, Hooshmand B, et al. Comparison of miltefosine and meglumine antimoniate for the treatment of zoonotic cutaneous leishmaniasis (ZCL) by a randomized clinical trial in Iran. Acta Trop. 2007;103(1):33–40.
  • Soto J, Toledo J, Valda L, et al. Treatment of Bolivian mucosal leishmaniasis with miltefosine. Clin Infect Dis. 2007;44(3):350–356.
  • Chakravarty J, Sundar S. Current and emerging medications for the treatment of leishmaniasis. Expert Opin Pharmacother. 2019;20(10):1251–1265.
  • Dorlo TP, Balasegaram M, Beijnen JH, et al. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother. 2012;67(11):2576–2597.
  • Dar MJ, McElroy CA, Khan MI, et al. Development and evaluation of novel miltefosine-polyphenol co-loaded second generation nano-transfersomes for the topical treatment of cutaneous leishmaniasis. Expert Opin Drug Deliv. 2020;17(1):97–110.
  • Sundar S, Olliaro PL. Miltefosine in the treatment of leishmaniasis: clinical evidence for informed clinical risk management. Ther Clin Risk Manag. 2007;3(5):733–740.
  • WHO. Control of the leishmaniases: report of a meeting of the WHO expert committee on the control of leishmaniases. Control of the leishmaniases: report of a meeting of the WHO expert committee on the control of leishmaniases; 2010 Mar 22–26; Geneva.
  • Dar MJ, Din FU, Khan GM. Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: macrophage as a target cell. Drug Deliv. 2018;25(1):1595–1606.
  • Moreno E, Schwartz J, Fernández C, et al. Nanoparticles as multifunctional devices for the topical treatment of cutaneous leishmaniasis. Expert Opin Drug Deliv. 2014;11(4):579–597.
  • Nylén S, Eidsmo L. Tissue damage and immunity in cutaneous leishmaniasis. Parasite Immunol. 2012;34(12):551–561.
  • Oshima S, Suzuki C, Yajima R, et al. The use of an artificial skin model to study transdermal absorption of drugs in inflamed skin. Biol Pharm Bull. 2012;35(2):203–209.
  • Hughes JP, Rees S, Kalindjian SB, et al. Principles of early drug discovery. Br J Pharmacol. 2011;162(6):1239–1249.
  • Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta. 1992;1104(1):226–232.
  • Cevc G, Blume G. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers. Transfersomes. Biochim Biophysi Act Biomembr. 2001;1514(2):191–205.
  • Elsayed MM, Abdallah OY, Naggar VF, et al. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int J Pharm. 2007;332(1-2):1–16.
  • Rabia S, Khaleeq N, Batool S, et al. Rifampicin-loaded nanotransferosomal gel for treatment of cutaneous leishmaniasis: passive targeting via topical route. Nanomedicine). 2020;15(2):183–203.
  • Salim MW, Shabbir K, Yousaf AM, et al. Preparation, in-vitro and in-vivo evaluation of rifampicin and vancomycin co-loaded transfersomal gel for the treatment of cutaneous leishmaniasis. J Drug Deliv Sci Technol. 2020;60:101996.
  • Zeb A, Arif ST, Malik M, et al. Potential of nanoparticulate carriers for improved drug delivery via skin. J Pharm Investig. 2019;49(5):485–517.
  • Kumar A, Pathak K, Bali V. Ultra-adaptable nanovesicular systems: a carrier for systemic delivery of therapeutic agents. Drug Discov Today. 2012;17(21-22):1233–1241.
  • Barry BW. Breaching the skin's barrier to drugs. Nat Biotechnol. 2004;22(2):165–167.
  • Bouwstra J, Honeywell-Nguyen P. Skin structure and mode of action of vesicles. Adv Drug Deliv Rev. 2002;54:S41–S55.
  • Silva SM, Sousa JJ, Marques EF, et al. Structure activity relationships in alkylammonium C12-gemini surfactants used as dermal permeation enhancers. AAPS J. 2013;15(4):1119–1127.
  • Honeywell-Nguyen PL, Bouwstra JA. Vesicles as a tool for transdermal and dermal delivery. Drug Discov Today Technol. 2005;2(1):67–74.
  • Khan MA, Pandit J, Sultana Y, et al. Novel carbopol-based transfersomal gel of 5-fluorouracil for skin cancer treatment: in vitro characterization and in vivo study. Drug Deliv. 2015;22(6):795–802.
  • Zeb A, Qureshi OS, Yu C-H, et al. Enhanced anti-rheumatic activity of methotrexate-entrapped ultradeformable liposomal gel in adjuvant-induced arthritis rat model. Int J Pharm. 2017;525(1):92–100.
  • Kalat SM, Khamesipour A, Bavarsad N, et al. Use of topical liposomes containing meglumine antimoniate (Glucantime) for the treatment of L. major lesion in BALB/c mice. Exp Parasitol. 2014;143:5–10.
  • Bafghi AF, Zadeh HF, Hejazian SH. Leishmania (L) major [MRHO/IR/75/ER] in the Balb/c mice and treatment with natural sweetner as a home remedy. World J Zoo. 2008;3(1):19–24.
  • Ghanbarzadeh S, Khorrami A, Arami S. Nonionic surfactant-based vesicular system for transdermal drug delivery. Drug Deliv. 2015;22(8):1071–1077.
  • Ahad A, Al-Saleh AA, Al-Mohizea AM, et al. Pharmacodynamic study of eprosartan mesylate-loaded transfersomes carbopol® gel under Dermaroller® on rats with methyl prednisolone acetate-induced hypertension. Biomed Pharmacother. 2017;89:177–184.
  • Din FU, Rashid R, Mustapha O, et al. Development of a novel solid lipid nanoparticles-loaded dual-reverse thermosensitive nanomicelle for intramuscular administration with sustained release and reduced toxicity. RSC Adv. 2015;5(54):43687–43694.
  • Khurana RK, Bansal AK, Beg S, et al. Enhancing biopharmaceutical attributes of phospholipid complex-loaded nanostructured lipidic carriers of mangiferin: systematic development, characterization and evaluation. Int J Pharm. 2017;518(1-2):289–306.
  • Din FU, Choi JY, Kim DW, et al. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Deliv. 2017;24(1):502–510.
  • Valenzuela-Oses JK, García MC, Feitosa VA, et al. Development and characterization of miltefosine-loaded polymeric micelles for cancer treatment. Mater Sci Eng C Mater Biol Appl. 2017;81:327–333.
  • Din FU, Zeb A, Shah KU, et al. Development, in-vitro and in-vivo evaluation of ezetimibe-loaded solid lipid nanoparticles and their comparison with marketed product. J Drug Deliv Sci Technol. 2019;51:583–590.
  • Kurakula M, Ahmed OA, Fahmy UA, et al. Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies. J Liposome Res. 2016;26(4):288–296.
  • El Zaafarany GM, Awad GA, Holayel SM, et al. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm. 2010;397(1-2):164–172.
  • Raza K, Singh B, Mahajan A, et al. Design and evaluation of flexible membrane vesicles (FMVs) for enhanced topical delivery of capsaicin. J Drug Target. 2011;19(4):293–302.
  • Chaudhary H, Kohli K, Kumar V. Nano-transfersomes as a novel carrier for transdermal delivery. Int J Pharm. 2013;454(1):367–380.
  • Aggarwal N, Goindi S, Mehta SD. Preparation and evaluation of dermal delivery system of griseofulvin containing vitamin E-TPGS as penetration enhancer. AAPS PharmSciTech. 2012;13(1):67–74.
  • Amin S, Sarfenejad A, Ahmad J, et al. Nanovesicular transfersomes for enhanced systemic delivery of telmisartan. Adv Sci Engng Med. 2013;5(4):299–308.
  • Qushawy M, Nasr A, Abd-Alhaseeb M, et al. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics. 2018;10(1):26.
  • Hussain A, Samad A, Ramzan M, et al. Elastic liposome-based gel for topical delivery of 5-fluorouracil: in vitro and in vivo investigation. Drug Deliv. 2016;23(4):1115–1129.
  • Ahad A, Aqil M, Kohli K, et al. The ameliorated longevity and pharmacokinetics of valsartan released from a gel system of ultradeformable vesicles. Artif Cells Nanomed Biotechnol. 2016;44(6):1457–1463.
  • Rathod HJ, Mehta DP. A review on pharmaceutical gel. Int J Pharm Sci. 2015;1(1):33–47.
  • Duangjit S, Opanasopit P, Rojanarata T, et al. Characterization and in vitro skin permeation of meloxicam-loaded liposomes versus transfersomes. J Drug Deliv. 2011;2011:418316.
  • Nazari-Vanani R, Vais RD, Sharifi F, et al. Investigation of anti-leishmanial efficacy of miltefosine and ketoconazole loaded on nanoniosomes. Acta Trop. 2018;185:69–76. Sep
  • Jaafar-Maalej C, Diab R, Andrieu V, et al. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res. 2010;20(3):228–243.
  • Pereira-Camelo SR, Francesch S, Perez E, et al. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug. Drug Dev Indl Pharm. 2016;42(6):985–997.
  • Malakar J, Sen SO, Nayak AK, et al. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm J. 2012;20(4):355–363.
  • Tripathi P, Jaiswal AK, Dube A, et al. Hexadecylphosphocholine (Miltefosine) stabilized chitosan modified ampholipospheres as prototype co-delivery vehicle for enhanced killing of L. donovani. Inter J Biol Macromol. 2017;105:625–637.
  • Patel HK, Barot BS, Parejiya PB, et al. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo: ex vivo permeation and skin irritation studies. Colloids Surf B Biointerfaces. 2013;102:86–94.
  • Singh S, Verma D, Mirza MA, et al. Development and optimization of ketoconazole loaded nano-transfersomal gel for vaginal delivery using Box-Behnken design: in vitro, ex vivo characterization and antimicrobial evaluation. J Drug Deliv Sci Technol. 2017;39:95–103.
  • Gupta PN, Mishra V, Singh P, et al. Tetanus toxoid-loaded transfersomes for topical immunization. J Pharm Pharmacol. 2005;57(3):295–301.
  • Zeb A, Qureshi OS, Kim HS, et al. Improved skin permeation of methotrexate via nanosized ultradeformable liposomes. Int J Nanomed. 2016;11:3813–3824.
  • Cao M, Ren L, Chen G. Formulation optimization and ex vivo and in vivo evaluation of celecoxib microemulsion-based gel for transdermal delivery. AAPS PharmSciTech. 2017;18(6):1960–1971.
  • Najafian HR, Mohebali M, Rezayat SM, et al. Nanoliposomal miltefosine for the treatment of cutaneous leishmaniasis caused by Leishmania major (MRHO/IR/75/ER): the drug preparation and in vitro study. Int J Pharm Res Allied Sci. 2016;5(3):97–107.
  • Guimaraes ET, Lima MS, Santos LA, et al. Activity of physalins purified from Physalis angulata in in vitro and in vivo models of cutaneous leishmaniasis. J Antimicrob Chemother. 2009;64(1):84–87.
  • Rosas LE, Keiser T, Barbi J, et al. Genetic background influences immune responses and disease outcome of cutaneous L. mexicana infection in mice. Int Immunol. 2005;17(10):1347–1357.
  • Guimarães ET, Santos LA, dos Santos RR, et al. Role of interleukin-4 and prostaglandin E2 in Leishmania amazonensis infection of BALB/c mice. Microbes Infect. 2006;8(5):1219–1226.
  • Szoka F, Jr., Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci USA. 1978;75(9):4194–4198.
  • Avadhani KS, Manikkath J, Tiwari M, et al. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv. 2017;24(1):61–74.
  • Aggarwal N, Goindi S. Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized guinea pig model of Microsporum canis-dermatophytosis. Int J Pharm. 2012;437(1-2):277–287.
  • Din FU, Mustapha O, Kim DW, et al. Novel dual-reverse thermosensitive solid lipid nanoparticle-loaded hydrogel for rectal administration of flurbiprofen with improved bioavailability and reduced initial burst effect. Eur J Pharm Biopharm. 2015;94:64–72.
  • Maeki M, Fujishima Y, Sato Y, et al. Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers. PLoS One. 2017;12(11):e0187962.
  • Verma DD, Verma S, Blume G, et al. Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm. 2003;258(1-2):141–151.
  • Khaleeq N, Din F-U, Khan AS, et al. Development of levosulpiride-loaded solid lipid nanoparticles and their in vitro and in vivo comparison with commercial product. J Microencapsul. 2020;37(2):160–169.
  • Kang MJ, Eum JY, Jeong MS, et al. Facilitated skin permeation of oregonin by elastic liposomal formulations and suppression of atopic dermatitis in NC/Nga mice. Biol Pharm Bull. 2010;33(1):100–106.
  • Kaur L, Jain SK, Singh K. Vitamin E TPGS based nanogel for the skin targeting of high molecular weight anti-fungal drug: development and in vitro and in vivo assessment [10.1039/C5RA08374E. RSC Adv. 2015;5(66):53671–53686.
  • Raquel F-G, Larry S, Jéssica A. d J, et al. Ultradeformable lipid vesicles localize Amphotericin B in the dermis for the treatment of infectious skin diseases. ACS Infect. Dis. 2020;6:2647–2660.
  • Ascenso A, Salgado A, Euletério C, et al. In vitro and in vivo topical delivery studies of tretinoin-loaded ultradeformable vesicles. Eur J Pharm Biopharm. 2014;88(1):48–55.
  • Borborema SET, Schwendener RA, Osso JA, et al. Uptake and antileishmanial activity of meglumine antimoniate-containing liposomes in Leishmania (Leishmania) major-infected macrophages. Int J Antimicrob Agents. 2011;38(4):341–347.
  • Khan AS, Ud Din F, Ali Z, et al. Development, in vitro and in vivo evaluation of miltefosine loaded nanostructured lipid carriers for the treatment of Cutaneous leishmaniasis. Int. J. Pharm. 2021;593:120109.DOI:10.1016/j.ijpharm.2020.120109
  • Nan A, Croft SL, Yardley V, et al. Targetable water-soluble polymer-drug conjugates for the treatment of visceral leishmaniasis. J Control Release. 2004;94(1):115–127.
  • Layoun A, Samba M, Santos MM. Isolation of murine peritoneal macrophages to carry out gene expression analysis upon toll-like receptors stimulation. J Vis Exp. 2015;98:e52749.
  • Nwaka S, Hudson A. Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov. 2006;5(11):941–955.
  • Zeb A, Rana I, Choi HI, et al. Potential and applications of nanocarriers for efficient delivery of biopharmaceuticals. Pharmaceutics. 2020;12(12):1184.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.