345
Views
31
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of PEG-4000-co-poly (AMPS) nanogels by cross-linking polymerization as highly responsive networks for enhancement in meloxicam solubility

, , , , , , & show all
Pages 465-476 | Received 18 May 2020, Accepted 13 Feb 2021, Published online: 02 Mar 2021

References

  • Peltonen L. Practical guidelines for the characterization and quality control of pure drug nanoparticles and nano-cocrystals in the pharmaceutical industry. Adv Drug Deliv Rev. 2018;131:101–115.
  • Siirilä J, Hietala S, Ekholm FS, et al. Glucose and maltose surface functionalized thermoresponsive poly(N-vinylcaprolactam) nanogels. Biomacromolecules. 2020;21(2):955–965.
  • Navarro L, Theune LE, Calderón M. Effect of crosslinking density on thermoresponsive nanogels: a study on the size control and the kinetics release of biomacromolecules. Eur Polym J. 2020;124:109478.
  • Mahmoudi Z, Mohammadnejad J, Razavi Bazaz S, et al. Promoted chondrogenesis of hMCSs with controlled release of TGF-β3 via microfluidics synthesized alginate nanogels. Carbohydr Polym. 2020;229:115551.
  • Richa R, Roy Choudhury A. Synthesis of a novel gellan-pullulan nanogel and its application in adsorption of cationic dye from aqueous medium. Carbohydr Polym. 2020;227:115291.
  • Zhang Y, Andrén OCJ, Nordström R, et al. Off-stoichiometric thiol-ene chemistry to dendritic nanogel therapeutics. Adv Funct Mater. 2019;29(18):1806693.
  • Suhail M, Rosenholm JM, Minhas MU, et al. Nanogels as drug-delivery systems: a comprehensive overview. Ther Deliv. 2019;10(11):697–717.
  • Neamtu I, Rusu AG, Diaconu A, et al. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv. 2017;24(1):539–557.
  • Yadav HK, Al Halabi NA, Alsalloum GA. Nanogels as novel drug delivery systems—a review. J Pharm Pharm Res. 2017;1(1):5.
  • Jiang Q, Wang J, Ma P, et al. Ion-pair formation combined with a penetration enhancer as a dual strategy to improve the transdermal delivery of meloxicam. Drug Deliv Transl Res. 2018;8(1):64–72.
  • Ambrus R, Szabó-Révész P, Kiss T, et al. Application of a suitable particle engineering technique by pulsed laser ablation in liquid (PLAL) to modify the physicochemical properties of poorly soluble drugs. J Drug Deliv Sci Technol. 2020;57:101727.
  • Jahr JS, Searle S, McCallum S, et al. Platelet function: meloxicam intravenous in whole blood samples from healthy volunteers. Clin Pharmacol Drug Dev. 2020;9(7):841–848.
  • Nagai N, Ogata F, Otake H, et al. Oral administration system based on meloxicam nanocrystals: decreased dose due to high bioavailability attenuates risk of gastrointestinal side effects. Pharmaceutics. 2020;12(4):313.
  • Zhang J, Froelich A, Michniak-Kohn B. Topical delivery of meloxicam using liposome and microemulsion formulation approaches. Pharmaceutics. 2020;12(3):282.
  • Arantes-Rodrigues R, Pinto-Leite R, Ferreira R, et al. Meloxicam in the treatment of in vitro and in vivo models of urinary bladder cancer. Biomed Pharmacother. 2013;67(4):277–284.
  • Ghorab MM, Abdel-Salam HM, El-Sayad MA, et al. Tablet formulation containing meloxicam and β-cyclodextrin: mechanical characterization and bioavailability evaluation. AAPS PharmSciTech. 2004;5(4):63–68.
  • Ghareeb MM, Abdulrasool AA, Hussein AA, et al. Kneading technique for preparation of binary solid dispersion of meloxicam with poloxamer 188. AAPS PharmSciTech. 2009;10(4):1206–1215.
  • Christensen SE, Cooper SA, Mack RJ, et al. A randomized double-blind controlled trial of intravenous meloxicam in the treatment of pain following dental impaction surgery. J Clin Pharmacol. 2018;58(5):593–605.
  • Song Q, Shen C, Shen B, et al. Development of a fast dissolving sublingual film containing meloxicam nanocrystals for enhanced dissolution and earlier absorption. J Drug Deliv Sci Technol. 2018;43:243–252.
  • Dahiya S, Kaushik A, Pathak K. Formulation optimization of multicomponent aqueous coground mixtures of meloxicam for dissolution enhancement. Chem Biol Lett. 2019;6(1):1–7.
  • Liu T, Yu X, Yin H. Study of top-down and bottom-up approaches by using design of experiment (DoE) to produce meloxicam nanocrystal capsules. AAPS PharmSciTech. 2020;21(3):79.
  • Baek N, Oh G-H, Park C, et al. Reprecipitation of poorly water-soluble cilostazol crystals using adsorbing carriers for enhanced dissolution and physicochemical modification. J Drug Deliv Sci Technol. 2018;43:477–486.
  • Matsumoto T, Akatsuka A, Dan S, et al. Synthesis and cancer cell growth inhibition effects of acetogenin analogs bearing ethylene glycol units for enhancing the water solubility. Tetrahedron. 2020;76(13):131058.
  • Perrut M, Jung J, Leboeuf F. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: micronization of neat particles. Int J Pharm. 2005;288(1):3–10.
  • Tahir H, Shahzad Y, Waters LJ, et al. Impact of processing methods on the dissolution of artemether from two non-ordered mesoporous silicas. Eur J Pharm Sci. 2018;112:139–145.
  • Xie Y, Yao Y. Octenylsuccinate hydroxypropyl phytoglycogen, a dendrimer-like biopolymer, solubilizes poorly water-soluble active pharmaceutical ingredients. Carbohydr Polym. 2018;180:29–37.
  • Abuzar SM, Hyun S-M, Kim J-H, et al. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process. Int J Pharm. 2018;538(1–2):1–13.
  • Letchmanan K, Shen S-C, Ng WK, et al. Application of transglycosylated stevia and hesperidin as drug carriers to enhance biopharmaceutical properties of poorly-soluble artemisinin. Colloids Surf B. 2018;161:83–93.
  • Palazi E, Karavas E, Barmpalexis P, et al. Melt extrusion process for adjusting drug release of poorly water soluble drug felodipine using different polymer matrices. Eur J Pharm Sci. 2018;114:332–345.
  • Tres F, Hall SD, Mohutsky MA, et al. Monitoring the phase behavior of supersaturated solutions of poorly water-soluble drugs using fluorescence techniques. J Pharm Sci. 2018;107(1):94–102.
  • Mohamed MI, Al-Mahallawi AM, Awadalla SM. Development and optimization of osmotically controlled drug delivery system for poorly aqueous soluble diacerein to improve its bioavailability. Drug Dev Ind Pharm. 2020;46(5):814–829.
  • Jermain SV, Brough C, Williams RO III. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery – an update. Int J Pharm. 2018;535(1–2):379–392.
  • Khattab WM, Zein El-Dein EE, El-Gizawy SA. Formulation of lyophilized oily-core poly-Ɛ-caprolactone nanocapsules to improve oral bioavailability of olmesartan medoxomil. Drug Dev Ind Pharm. 2020;46(5):795–805.
  • Kasekar NM, Singh S, Jadhav KR, et al. BCS class II drug loaded protein nanoparticles with enhanced oral bioavailability: in vitro evaluation and in vivo pharmacokinetic study in rats. Drug Dev Ind Pharm. 2020;46(6):955–962.
  • Yu H, Ming Lim L, Dong B, et al. Proof-of-concept preparation and characterization of dual-drug amorphous nanoparticle complex as fixed-dose combination of poorly soluble drugs. Drug Dev Ind Pharm. 2019;45(1):105–116.
  • Zhang L, Hu Y, Jiang X, et al. Camptothecin derivative-loaded poly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactone-co-lactide) nanoparticles and their biodistribution in mice. J Control Release. 2004;96(1):135–148.
  • Ku MS, Dulin W. A biopharmaceutical classification-based right-first-time formulation approach to reduce human pharmacokinetic variability and project cycle time from first-in-human to clinical proof-of-concept. Pharm Dev Technol. 2012;17(3):285–302.
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012;64:4–17.
  • Yalkowsky SH, Roseman TJ. Techniques of solubilization of drugs. New york: M. Dekker; 1981.
  • Riikonen J, Xu W, Lehto V-P. Mesoporous systems for poorly soluble drugs – recent trends. Int J Pharm. 2018;536(1):178–186.
  • Morina D, Sessevmez M, Sinani G, et al. Oral tablet formulations containing cyclodextrin complexes of poorly water soluble cefdinir to enhance its bioavailability. J Drug Deliv Sci Technol. 2020;57:101742.
  • Yousaf AM, Ramzan M, Shahzad Y, et al. Fabrication and in vitro characterization of fenofibric acid-loaded hyaluronic acid–polyethylene glycol polymeric composites with enhanced drug solubility and dissolution rate. Int J Polym Mater Polym Biomater. 2019;68(9):510–515.
  • Kajdič S, Zupančič Š, Roškar R, et al. The potential of nanofibers to increase solubility and dissolution rate of the poorly soluble and chemically unstable drug lovastatin. Int J Pharm. 2020;573:118809.
  • Yousaf AM, Malik UR, Shahzad Y, et al. Silymarin-laden PVP-PEG polymeric composite for enhanced aqueous solubility and dissolution rate: preparation and in vitro characterization. J Pharm Anal. 2019;9(1):34–39.
  • Zhao J, Wang Y, Ma Y, et al. Smart nanocarrier based on PEGylated hyaluronic acid for deacetyl mycoepoxydience: high stability with enhanced bioavailability and efficiency. Carbohydr Polym. 2019;203:356–368.
  • Fang J-L, Luo Y, Yuan K, et al. Preparation and evaluation of an encapsulated anthocyanin complex for enhancing the stability of anthocyanin. LWT Food Sci Technol. 2020;117:108543.
  • Khalid Q, Ahmad M, Minhas MU. Synthesis of β-cyclodextrin hydrogel nanoparticles for improving the solubility of dexibuprofen: characterization and toxicity evaluation. Drug Dev Ind Pharm. 2017;43(11):1873–1884.
  • Asghar S, Minhas MU, Ahmad M, et al. Hydrophobic–hydrophilic cross-linked matrices for controlled release formulation of highly water-soluble drug venlafaxine: synthesis and evaluation studies. Adv Polym Technol. 2018;37(8):3146–3158.
  • Sayed E, Karavasili C, Ruparelia K, et al. Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: in vitro and ex vivo evaluation. J Control Release. 2018;278:142–155.
  • Abbasi M, Sohail M, Minhas MU, et al. Novel biodegradable pH-sensitive hydrogels: an efficient controlled release system to manage ulcerative colitis. Int J Biol Macromol. 2019;136:83–96.
  • Lee K-R, Kim E-J, Seo S-W, et al. Effect of poloxamer on the dissolution of felodipine and preparation of controlled release matrix tablets containing felodipine. Arch Pharm Res. 2008;31(8):1023–1028.
  • Mechtcherine V, Snoeck D, Schröfl C, et al. Testing superabsorbent polymer (SAP) sorption properties prior to implementation in concrete: results of a RILEM round-robin test. Mater Struct. 2018;51(1):28.
  • Shah SA, Sohail M, Minhas MU, et al. pH-responsive CAP-co-poly(methacrylic acid)-based hydrogel as an efficient platform for controlled gastrointestinal delivery: fabrication, characterization, in vitro and in vivo toxicity evaluation. Drug Deliv Transl Res. 2019;9(2):555–577.
  • Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J Pharm Sci. 2015;10(1):13–23.
  • Mahmood A, Ahmad M, Sarfraz RM, et al. Development of acyclovir loaded β-cyclodextrin-g-poly methacrylic acid hydrogel microparticles: an in vitro characterization. Adv Polym Technol. 2018;37(3):697–705.
  • Niharika A. Enhancement of solubility and dissolution rate of meloxicam by solid dispersions in superdisintegrants. Res J Pharm Biol Chem Sci. 2010;1:655–671.
  • Wiradjaja FS, Sulaiman TNS, Rohman A. Optimization and formulation meloxicam-β-cyclodextrin orally disintegrating tablet using superdisintegrant combination and microcrystalline cellulose as filler-binder. J Chem Pharm Sci. 2016;9(3):1023–1030.
  • Baboota S, Agarwal S. Preparation and characterisation of meloxicam hydroxy propyl β-cyclodextrin inclusion complex. J Incl Phenom Macrocycl Chem. 2005;51(3–4):219–224.
  • Long CM, Tang K, Chokshi H, et al. Surface dissolution UV imaging for investigation of dissolution of poorly soluble drugs and their amorphous formulation. AAPS PharmSciTech. 2019;20(3):113.
  • Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.
  • Bodek K. Evaluation of microcrystalline chitosan properties as a drug carrier. Part II. The influence of microcrystalline chitosan on release rate of ketoprofen. Acta Pol Pharm. 2000;58(3):185–194.
  • Ali L, Ahmad M, Usman M, et al. Controlled release of highly water-soluble antidepressant from hybrid copolymer poly vinyl alcohol hydrogels. Polym Bull. 2014;71(1):31–46.
  • Yin L, Fei L, Cui F, et al. Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials. 2007;28(6):1258–1266.
  • Ullah K, Khan SA, Murtaza G, et al. Gelatin-based hydrogels as potential biomaterials for colonic delivery of oxaliplatin. Int J Pharm. 2019;556:236–245.
  • Fekete T, Borsa J, Takács E, et al. Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent. Radiat Phys Chem. 2016;118:114–119.
  • Ranjha NM, Ayub G, Naseem S, et al. Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil. J Mater Sci Mater Med. 2010;21(10):2805–2816.
  • Taleb MA, Hegazy DE, Mahmoud GA. Characterization and in vitro drug release behavior of (2-hydroxyethyl methacrylate)-co-(2-acrylamido-2-methyl-1-propanesulfonic acid) crosslinked hydrogels prepared by ionizing radiation. Int J Polym Mater Polym Biomater. 2014;63(16):840–845.
  • Hazer O, Soykan C, Kartal Ş. Synthesis and swelling behavior analysis of poly(acrylamidoxime-co-2-acrylamido-2-methylpropane sulfonic acid) hydrogels. J Macromol Sci A Pure Appl Chem. 2007;45(1):45–51.
  • Zhang YXi, Wu F, Li M, et al. pH switching on-off semi-IPN hydrogel based on cross-linked poly(acrylamide-co-acrylic acid) and linear polyallyamine. Polymer. 2005;46(18):7695–7700.
  • Emara LH, Emam MF, Taha Nf, et al. In-vitro dissolution study of meloxicam immediate release products using flow through cell (USP apparatus 4) under different operational conditions. Int J Pharm Pharm Sci. 2014;6(11):254–260.
  • Elbary AA, Ali AA, Aboud HM. Enhanced dissolution of meloxicam from orodispersible tablets prepared by different methods. Bull Fac Pharm Cairo Univ. 2012;50(2):89–97.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.