685
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Ternary solid dispersions: classification and formulation considerations

, &
Pages 1011-1028 | Received 13 Sep 2020, Accepted 18 Feb 2021, Published online: 17 Aug 2021

References

  • Al-Kassas R, Bansal M, Shaw J. Nanosizing techniques for improving bioavailability of drugs. J Control Release. 2017;260:202–212.
  • Johnson JLH, He Y, Yalkowsky SH. Prediction of precipitation-induced phlebitis: a statistical validation of an in vitro model. J Pharm Sci. 2003;92(8):1574–1581.
  • Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85(10):1017–1025.
  • Matloob AH, Mourtas S, Klepetsanis P, et al. Increasing the stability of curcumin in serum with liposomes or hybrid drug-in-cyclodextrin-in-liposome systems: a comparative study. Int J Pharm. 2014;476(1-2):108–115.
  • Tønnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm. 2002;244(1-2):127–135.
  • Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23-24):1068–1075.
  • Tran P, Pyo Y-C, Kim D-H, et al. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics. 2019;11(3):132.
  • Gala UH, Miller DA, Williams RO. Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim Biophys Acta Rev Cancer. 2020;1873(1):188319.
  • Kumar V, Mintoo MJ, Mondhe DM, et al. Binary and ternary solid dispersions of an anticancer preclinical lead, IIIM-290: In vitro and in vivo studies. Int J Pharm. 2019;570:118683.
  • Davis MT, Potter CB, Mohammadpour M, et al. Design of spray dried ternary solid dispersions comprising itraconazole, soluplus and HPMCP: Effect of constituent compositions. Int J Pharm. 2017;519(1-2):365–372.
  • Tian B, Ju X, Yang D, et al. Effect of the third component on the aging and crystallization of cinnarizine-soluplus® binary solid dispersion. Int J Pharm. 2020;580:119240.
  • Ueda K, Yamazoe C, Yasuda Y, et al. Mechanism of enhanced nifedipine dissolution by polymer-blended solid dispersion through molecular-level characterization. Mol Pharm. 2018;15(9):4099–4109.
  • Guan J, Jin L, Liu Q, et al. Exploration of supersaturable lacidipine ternary amorphous solid dispersion for enhanced dissolution and in vivo absorption. Eur J Pharm Sci. 2019;139:105043.
  • Prasad D, Chauhan H, Atef E. Role of molecular interactions for synergistic precipitation inhibition of poorly soluble drug in supersaturated drug-polymer-polymer ternary solution. Mol Pharm. 2016;13(3):756–765.
  • Shi X, Xu T, Huang W, et al. Stability and bioavailability enhancement of telmisartan ternary solid dispersions: the synergistic effect of polymers and drug-polymer(s) interactions. AAPS PharmSciTech. 2019;20(4):143.
  • Schittny A, Huwyler J, Puchkov M. Mechanisms of increased bioavailability through amorphous solid dispersions: a review. Drug Deliv. 2020;27(1):110–127.
  • Solanki NG, Gumaste SG, Shah AV, et al. Effects of surfactants on itraconazole-hydroxypropyl methylcellulose acetate succinate solid dispersion prepared by hot melt extrusion. II: rheological analysis and extrudability testing. J Pharm Sci. 2019;108(9):3063–3073.
  • Solanki NG, Lam K, Tahsin M, et al. Effects of surfactants on itraconazole-HPMCAS Solid dispersion prepared by hot-melt extrusion I: miscibility and drug release. J Pharm Sci. 2019;108(4):1453–1465.
  • Qi S, Roser S, Edler KJ, et al. Insights into the role of polymer-surfactant complexes in drug solubilisation/stabilisation during drug release from solid dispersions. Pharm Res. 2013;30(1):290–302.
  • Nilsson S. Interactions between water-soluble cellulose derivatives and surfactants. 1. The HPMC/SDS/water system. Macromolecules. 1995;28(23):7837–7844.
  • Rashid R, Kim DW, Ud Din F, et al. Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion. Carbohydr Polym. 2015;130:26–31.
  • Baghel S, Cathcart H, O'Reilly NJ. Investigation into the solid-state properties and dissolution profile of spray-dried ternary amorphous solid dispersions: a rational step toward the design and development of a multicomponent amorphous system. Mol Pharm. 2018;15(9):3796–3812.
  • Feng D, Peng T, Huang Z, et al. Polymer–surfactant system based amorphous solid dispersion: precipitation inhibition and bioavailability enhancement of itraconazole. Pharmaceutics. 2018;10(2):53.
  • Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: Selection of polymer-surfactant combinations using solubility parameters and testing the processability. Int J Pharm. 2007;328(2):119–129.
  • Chamsai B, Limmatvapirat S, Sungthongjeen S, et al. Enhancement of solubility and oral bioavailability of manidipine by formation of ternary solid dispersion with d-α-tocopherol polyethylene glycol 1000 succinate and copovidone. Drug Dev Ind Pharm. 2017;43(12):2064–2075.
  • Kakran M, Sahoo NG, Tan YW, et al. Ternary dispersions to enhance solubility of poorly water soluble antioxidants. Colloids Surf. Physicochem. Eng. Asp. 2013;433:111–121.
  • Yan Y-D, Sung JH, Kim KK, et al. Novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes. Int J Pharm. 2012;422(1-2):202–210.
  • Sawicki E, Beijnen JH, Schellens JHM, et al. Pharmaceutical development of an oral tablet formulation containing a spray dried amorphous solid dispersion of docetaxel or paclitaxel. Int. J. Pharm. 2016;511(2):765–773.
  • Nanaki S, Eleftheriou RM, Barmpalexis P, et al. Evaluation of dissolution enhancement of aprepitant drug in ternary pharmaceutical solid dispersions with Soluplus® and poloxamer 188 prepared by melt mixing. Sci. 2019;1(1):11.
  • Kim YH, Kim DW, Kwon MS, et al. Clopidogrel napadisilate monohydrate loaded surface-modified solid dispersion: physicochemical characterization and in vivo evaluation. Biol Pharm Bull. 2015;38(7):1033–1040.
  • Koh PT, Chuah JN, Talekar M, et al. Formulation development and dissolution rate enhancement of efavirenz by solid dispersion systems. Indian J Pharm Sci. 2013;75(3):291–301.
  • Lee J-Y, Kang W-S, Piao J, et al. Soluplus®/TPGS-based solid dispersions prepared by hot-melt extrusion equipped with twin-screw systems for enhancing oral bioavailability of valsartan. Drug Des. Devel. Ther. 2015;9:2745–2756.
  • Ha E-S, Kim J-S, Baek I, et al. Development of megestrol acetate solid dispersion nanoparticles for enhanced oral delivery by using a supercritical antisolvent process. Drug Des Devel Ther. 2015;9:4269–4277.
  • Cho Y, Ha E-S, Baek I-H, et al. Enhanced supersaturation and oral absorption of sirolimus using an amorphous solid dispersion based on Eudragit® E. Molecules. 2015;20(6):9496–9509.
  • Wang X, Michoel A, Van den Mooter G. Solid state characteristics of ternary solid dispersions composed of PVP VA64, Myrj 52 and itraconazole. Int J Pharm. 2005;303(1-2):54–61.
  • Maghraby GME, Alomrani AH. Synergistic enhancement of itraconazole dissolution by ternary system formation with pluronic F68 and hydroxypropylmethylcellulose. Sci. Pharm. 2009;77:401–418.
  • Janssens S, Nagels S, de Armas HN, et al. Formulation and characterization of ternary solid dispersions made up of Itraconazole and two excipients, TPGS 1000 and PVPVA 64, that were selected based on a supersaturation screening study. Eur J Pharm Biopharm. 2008;69(1):158–166.
  • Szuts A, Láng P, Ambrus R, et al. Applicability of sucrose laurate as surfactant in solid dispersions prepared by melt technology. Int J Pharm. 2011;410(1-2):107–110.
  • Moes J, Koolen S, Huitema A, et al. Development of an oral solid dispersion formulation for use in low-dose metronomic chemotherapy of paclitaxel. Eur J Pharm Biopharm. 2013;83(1):87–94.
  • Janssens S, Humbeeck JV, den Mooter GV. Evaluation of the formulation of solid dispersions by co-spray drying itraconazole with Inutec SP1, a polymeric surfactant, in combination with PVPVA 64. Eur J Pharm Biopharm. 2008;70(2):500–505.
  • Mosquera-Giraldo LI, Trasi NS, Taylor LS. Impact of surfactants on the crystal growth of amorphous celecoxib. Int J Pharm. 2014;461(1-2):251–257.
  • Zi P, Zhang C, Ju C, et al. Solubility and bioavailability enhancement study of lopinavir solid dispersion matrixed with a polymeric surfactant - Soluplus. Eur J Pharm Sci. 2019;134:233–245.
  • Bajracharya R, Lee SH, Song JG, et al. Development of a ternary solid dispersion formulation of LW6 to improve the in vivo activity as a BCRP inhibitor: preparation and in vitro/in vivo characterization. Pharmaceutics. 2019;11(5):206.
  • Yin X, Daintree LS, Ding S, et al. Itraconazole solid dispersion prepared by a supercritical fluid technique: preparation, in vitro characterization, and bioavailability in beagle dogs. Drug Des Devel Ther. 2015;9:2801–2810.,
  • Goddeeris C, Willems T, Van den Mooter G. Formulation of fast disintegrating tablets of ternary solid dispersions consisting of TPGS 1000 and HPMC 2910 or PVPVA 64 to improve the dissolution of the anti-HIV drug UC 781. Eur J Pharm Sci. 2008;34(4-5):293–302.
  • Nair R, Nyamweya N, Gönen S, et al. Influence of various drugs on the glass transition temperature of poly(vinylpyrrolidone): a thermodynamic and spectroscopic investigation. Int J Pharm. 2001;225(1-2):83–96.
  • Al-Obaidi H, Ke P, Brocchini S, et al. Characterization and stability of ternary solid dispersions with PVP and PHPMA. Int J Pharm. 2011;419(1-2):20–27.
  • Kuo S-W, Shih C-C, Shieh J-S, et al. Specific interactions in miscible polymer blends of poly(2-hydroxypropyl methacrylate) with polyvinylpyrrolidone. Polym Int. 2004;53(2):218–224.
  • Prasad D, Chauhan H, Atef E. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects. J Pharm Sci. 2014;103(11):3511–3523.
  • Meeus J, Scurr DJ, Chen X, et al. Combination of (M)DSC and surface analysis to study the phase behaviour and drug distribution of ternary solid dispersions. Pharm Res. 2015;32(4):1407–1416.
  • Albadarin AB, Potter CB, Davis MT, et al. Development of stability-enhanced ternary solid dispersions via combinations of HPMCP and Soluplus® processed by hot melt extrusion. Int J Pharm. 2017;532(1):603–611.
  • Davis MT, Potter CB, Walker GM. Downstream processing of a ternary amorphous solid dispersion: The impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution. Int J Pharm. 2018;544(1):242–253.
  • Shuai S, Yue S, Huang Q, et al. Preparation, characterization and in vitro/vivo evaluation of tectorigenin solid dispersion with improved dissolution and bioavailability. Eur J Drug Metab Pharmacokinet. 2016;41(4):413–422.
  • Hirasawa N, Ishise S, Miyata H, et al. An attempt to stabilize nilvadipine solid dispersion by the use of ternary systems. Drug Dev Ind Pharm. 2003;29(9):997–1004.
  • Park GB, Yoon H, Bae JW, et al. Release behavior of cilostazol according to the fabrication methods and ratio of HPMC/PVP. Macromol Res. 2013;21(9):971–976.
  • Taupitz T, Dressman JB, Klein S. New formulation approaches to improve solubility and drug release from fixed dose combinations: case examples pioglitazone/glimepiride and ezetimibe/simvastatin. Eur J Pharm Biopharm. 2013;84(1):208–218.
  • Lim SM, Pang ZW, Tan HY, et al. Enhancement of docetaxel solubility using binary and ternary solid dispersion systems. Drug Dev Ind Pharm. 2015;41(11):1847–1855.
  • Beig A, Fine-Shamir N, Lindley D, et al. Advantageous Solubility-Permeability Interplay When Using Amorphous Solid Dispersion (ASD) Formulation for the BCS Class IV P-gp Substrate Rifaximin: Simultaneous Increase of Both the Solubility and the Permeability. Aaps J. 2017;19(3):806–813.
  • Gala U, Miller D, Williams RO. Improved dissolution and pharmacokinetics of abiraterone through KinetiSol® enabled amorphous solid dispersions. Pharmaceutics. 2020;12(4):357.
  • Zoeller T, Dressman JB, Klein S. Application of a ternary HP-β-CD-complex approach to improve the dissolution performance of a poorly soluble weak acid under biorelevant conditions. Int J Pharm. 2012;430(1-2):176–183.
  • Alhijjaj M, Bouman J, Wellner N, et al. Creating drug solubilization compartments via phase separation in multicomponent buccal patches prepared by direct hot melt extrusion-injection molding. Mol Pharm. 2015;12(12):4349–4362.
  • Cirri M, Mura P, Rabasco AM, et al. Characterization of ibuproxam binary and ternary dispersions with hydrophilic carriers. Drug Dev. Ind. Pharm. 2004;30(1):65–74.
  • Al-Obaidi H, Buckton G. Evaluation of griseofulvin binary and ternary solid dispersions with HPMCAS. AAPS PharmSciTech. 2009;10(4):1172–1177.
  • Janssens S, Roberts C, Smith EF, et al. Physical stability of ternary solid dispersions of itraconazole in polyethyleneglycol 6000/hydroxypropylmethylcellulose 2910 E5 blends. Int J Pharm. 2008;355(1-2):100–107.
  • Kalivoda A, Fischbach M, Kleinebudde P. Application of mixtures of polymeric carriers for dissolution enhancement of oxeglitazar using hot-melt extrusion. Int J Pharm. 2012;439(1-2):145–156.
  • Higashi K, Seo A, Egami K, et al. Mechanistic insight into the dramatic improvement of probucol dissolution in neutral solutions by solid dispersion in Eudragit E PO with saccharin. J Pharm Pharmacol. 2016;68(5):655–664.
  • Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329(1-2):1–11.
  • Singh SK, Srinivasan KK, Singare DS, et al. Formulation of ternary complexes of glyburide with hydroxypropyl-β-cyclodextrin and other solubilizing agents and their effect on release behavior of glyburide in aqueous and buffered media at different agitation speeds. Drug Dev Ind Pharm. 2012;38(11):1328–1336.
  • Dong L, Mai Y, Liu Q, et al. Mechanism and improved dissolution of glycyrrhetinic acid solid dispersion by alkalizers. Pharmaceutics. 2020;12(1):82.
  • Martins RM, Machado MO, Pereira SV, et al. Microparticulated hydrochlorothiazide solid dispersion: enhancing dissolution properties via spray drying. Dry. Technol. 2012;30(9):959–967.
  • Hanada M, Jermain SV, Williams RO. Enhanced dissolution of a porous carrier-containing ternary amorphous solid dispersion system prepared by a hot melt method. J Pharm Sci. 2018;107(1):362–371.
  • Luo D, Kim JH, Park C, et al. Design of fixed dose combination and physicochemical characterization of enteric-coated bilayer tablet with circadian rhythmic variations containing telmisartan and pravastatin sodium. Int J Pharm. 2017;523(1):343–356.
  • Papadimitriou S, Bikiaris D. Dissolution rate enhancement of the poorly water-soluble drug Tibolone using PVP, SiO2, and their nanocomposites as appropriate drug carriers. Drug Dev Ind Pharm. 2009;35(9):1128–1138.
  • Park CW, Tung NT, Rhee YS, et al. Physicochemical, pharmacokinetic and pharmacodynamic evaluations of novel ternary solid dispersion of rebamipide with poloxamer 407. Drug Dev Ind Pharm. 2013;39(6):836–844.
  • Patel JR, Carlton RA, Yuniatine F, et al. Preparation and structural characterization of amorphous spray-dried dispersions of tenoxicam with enhanced dissolution. J Pharm Sci. 2012;101(2):641–663.
  • Zhang Q, Ren W, Dushkin AV, et al. Preparation, characterization, in vitro and in vivo studies of olmesartan medoxomil in a ternary solid dispersion with N-methyl-D-glucamine and hydroxypropyl-β-cyclodextrin. J Drug Deliv Sci Technol. 2020;56:101546.
  • Paidi SK, Jena SK, Ahuja BK, et al. Preparation, in-vitro and in-vivo evaluation of spray-dried ternary solid dispersion of biopharmaceutics classification system class II model drug. J Pharm Pharmacol. 2015;67(5):616–629.
  • Nakahashi T, Matsumoto T, Wakiyama N, et al. The role of light anhydrous silicic acid on physical stability of troglitazone solid dispersion under humidified conditions. Adv Powder Technol. 2014;25(2):716–721.
  • Hülsmann S, Backensfeld T, Keitel S, et al. Melt extrusion–an alternative method for enhancing the dissolution rate of 17beta-estradiol hemihydrate. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV. 2000;49(3):237–242.
  • Ghanavati R, Taheri A, Homayouni A. Anomalous dissolution behavior of celecoxib in PVP/Isomalt solid dispersions prepared using spray drier. Mater Sci Eng C Mater Biol Appl. 2017;72:501–511.
  • Pradhan R, Tran TH, Choi JY, et al. Development of a rebamipide solid dispersion system with improved dissolution and oral bioavailability. Arch Pharm Res. 2015;38(4):522–533.
  • Nguyen DN, Van den Mooter G. The fate of ritonavir in the presence of darunavir. Int J Pharm. 2014;475(1-2):214–226.
  • Löbmann K, Laitinen R, Grohganz H, et al. Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol Pharm. 2011;8(5):1919–1928.
  • Dengale SJ, Ranjan OP, Hussen SS, et al. Preparation and characterization of co-amorphous Ritonavir-Indomethacin systems by solvent evaporation technique: improved dissolution behavior and physical stability without evidence of intermolecular interactions. Eur J Pharm Sci. 2014;62:57–64.
  • Löbmann K, Strachan C, Grohganz H, et al. Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. Eur J Pharm Biopharm. 2012;81(1):159–169.
  • Riekes MK, Engelen A, Appeltans B, et al. New perspectives for fixed dose combinations of poorly water-soluble compounds: a case study with ezetimibe and lovastatin. Pharm Res. 2016;33(5):1259–1275.
  • Trasi NS, Taylor LS. Dissolution performance of binary amorphous drug combinations-Impact of a second drug on the maximum achievable supersaturation. Int J Pharm. 2015;496(2):282–290.
  • Pacult J, Rams-Baron M, Chmiel K, et al. How can we improve the physical stability of co-amorphous system containing flutamide and bicalutamide? The case of ternary amorphous solid dispersions. Eur J Pharm Sci. 2019;136:104947.
  • Gupta MK, Bogner RH, Goldman D, et al. Mechanism for further enhancement in drug dissolution from solid-dispersion granules upon storage. Pharm Dev Technol. 2002;7(1):103–112.
  • Araújo RR, Teixeira CCC, Freitas LAP. The Preparation of Ternary Solid Dispersions of an Herbal Drug via Spray Drying of Liquid Feed. Dry. Technol. 2010;28(3):412–421.
  • Kim S-J, Lee H-K, Na Y-G, et al. A novel composition of ticagrelor by solid dispersion technique for increasing solubility and intestinal permeability. Int J Pharm. 2019;555:11–18.
  • Martins RM, Siqueira S, Tacon LA, et al. Microstructured ternary solid dispersions to improve carbamazepine solubility. Powder Technol. 2012;215-216:156–165.
  • Teixeira CCC, Mendonça LM, Bergamaschi MM, et al. Microparticles containing curcumin solid dispersion: stability, bioavailability and anti-inflammatory activity. AAPS PharmSciTech. 2016;17(2):252–261.
  • Baghel S, Cathcart H, O'Reilly NJ. Theoretical and experimental investigation of drug-polymer interaction and miscibility and its impact on drug supersaturation in aqueous medium. Eur J Pharm Biopharm. 2016;107:16–31.
  • Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058–1066.
  • Vasconcelos T, Marques S, das Neves J, et al. Amorphous solid dispersions: Rational selection of a manufacturing process. Adv Drug Deliv Rev. 2016;100:85–101.
  • Lin Y, Cogdill RP, Wildfong PLD. Informatic calibration of a materials properties database for predictive assessment of mechanically activated disordering potential for small molecule organic solids. J Pharm Sci. 2009;98(8):2696–2708.
  • Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281–1302.
  • Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik EV. 2000;50(1):47–60.
  • Sahoo NG, Kakran M, Li L, et al. Dissolution enhancement of a poorly water-soluble antimalarial drug by means of a modified multi-fluid nozzle pilot spray drier. Mater. Sci. Eng. C. 2011;31(2):391–399.
  • T. c/o S.C.R.C. Hoshino, F. c/o S.C.R.C. Kusaki, I. c/o S.C.R.C. Fukui, Solid dispersion preparation, EP1847260A2, 2007. https://patents.google.com/patent/EP1847260A2/nl. (accessed April 4, 2020).
  • Xie T, Taylor LS. Effect of temperature and moisture on the physical stability of binary and ternary amorphous solid dispersions of celecoxib. J Pharm Sci. 2017;106(1):100–110.
  • Vo CL-N, Park C, Lee B-J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85(3 Pt B):799–813.
  • Sosnik A, Seremeta KP. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci. 2015;223:40–54.
  • Paudel A, Worku ZA, Meeus J, et al. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations. Int J Pharm. 2013;453(1):253–284.
  • Cai YZ, Corke H. Production and properties of spray-dried amaranthus betacyanin pigments. J Food Science. 2000;65(7):1248–1252.
  • Srinarong P, de Waard H, Frijlink HW, et al. Improved dissolution behavior of lipophilic drugs by solid dispersions: the production process as starting point for formulation considerations. Expert Opin Drug Deliv. 2011;8(9):1121–1140.
  • Miller DA, Gil M. Spray-drying technology. In: R.O. Williams III, A.B. Watts, D.A. Miller, editors. Formul. Poorly water soluble drugs. New York, NY: Springer; 2012. p. 363–442. https://doi.org/https://doi.org/10.1007/978-1-4614-1144-4_10.
  • Kunz C, Schuldt-Lieb S, Gieseler H. Freeze-drying from organic co-solvent systems, part 2: process modifications to reduce residual solvent levels and improve product quality attributes. J Pharm Sci. 2019;108(1):399–415.
  • Kim M-S, Baek I-H. Fabrication and evaluation of valsartan-polymer- surfactant composite nanoparticles by using the supercritical antisolvent process. Int J Nanomedicine. 2014;9:5167–5176.
  • Meng F, Gala U, Chauhan H. Classification of solid dispersions: correlation to (i) stability and solubility (ii) preparation and characterization techniques. Drug Dev Ind Pharm. 2015;41(9):1401–1415.
  • Mendonsa N, Almutairy B, Kallakunta VR, et al. Manufacturing strategies to develop amorphous solid dispersions: An overview. J. Drug Deliv. Sci. Technol. 2020;55:101459.
  • Gao N, Guo M, Fu Q, et al. Application of hot melt extrusion to enhance the dissolution and oral bioavailability of oleanolic acid. Asian J Pharm Sci. 2017;12(1):66–72.
  • Liu J, Cao F, Zhang C, et al. Use of polymer combinations in the preparation of solid dispersions of a thermally unstable drug by hot-melt extrusion. Acta Pharm Sin B. 2013;3(4):263–272.
  • Censi R, Gigliobianco MR, Casadidio C, et al. Hot melt extrusion: highlighting physicochemical factors to be investigated while designing and optimizing a hot melt extrusion process. Pharmaceutics. 2018;10(3):89.
  • Djuris J, Nikolakakis I, Ibric S, et al. Preparation of carbamazepine-Soluplus solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting. Eur J Pharm Biopharm. 2013;84(1):228–237.
  • Shin S-C, Kim J. Physicochemical characterization of solid dispersion of furosemide with TPGS. Int J Pharm. 2003;251(1-2):79–84.
  • DiNunzio JC, Brough C, Miller DA, et al. Applications of KinetiSol dispersing for the production of plasticizer free amorphous solid dispersions. Eur J Pharm Sci. 2010;40(3):179–187.
  • Ellenberger DJ, Miller DA, Kucera SU, et al. Improved vemurafenib dissolution and pharmacokinetics as an amorphous solid dispersion produced by KinetiSol® processing. AAPS PharmSciTech. 2018;19(5):1957–1970.
  • Keen JM, LaFountaine JS, Hughey JR, et al. Development of itraconazole tablets containing viscous kinetisol solid dispersions: in vitro and in vivo analysis in dogs. AAPS PharmSciTech. 2018;19(5):1998–2008.
  • Descamps M, Willart JF, Dudognon E, et al. Transformation of pharmaceutical compounds upon milling and comilling: the role of T(g). J Pharm Sci. 2007;96(5):1398–1407.
  • Willart JF, Descamps M. Solid state amorphization of pharmaceuticals. Mol Pharm. 2008;5(6):905–920.
  • Khalil R, Ghorab M, Rahman NAE, et al. Characterization of ternary solid dispersions of nimesulide with Inutec SP1 and β-cyclodextrin and evaluation of anti-inflammatory efficiency in rats. Egypt. Pharm. J. 2013;12:46–56.,
  • Shah B, Kakumanu VK, Bansal AK. Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids. J Pharm Sci. 2006;95(8):1641–1665.
  • Miyazaki T, Aso Y, Yoshioka S, et al. Differences in crystallization rate of nitrendipine enantiomers in amorphous solid dispersions with HPMC and HPMCP. Int J Pharm. 2011;407(1-2):111–118.
  • Hu X-Y, Lou H, Hageman MJ. Preparation of lapatinib ditosylate solid dispersions using solvent rotary evaporation and hot melt extrusion for solubility and dissolution enhancement. Int J Pharm. 2018;552(1-2):154–163.
  • Pungor E, Horvai G. A practical guide to instrumental analysis. Florida, USA: CRC Press; 1994.
  • Tian B, Tang X, Taylor LS. Investigating the correlation between miscibility and physical stability of amorphous solid dispersions using fluorescence-based techniques. Mol Pharm. 2016;13(11):3988–4000.
  • Qian F, Huang J, Zhu Q, et al. Is a distinctive single Tg a reliable indicator for the homogeneity of amorphous solid dispersion? Int J Pharm. 2010;395(1-2):232–235.
  • Lodge TP, Wood ER, Haley JC. Two calorimetric glass transitions do not necessarily indicate immiscibility: The case of PEO/PMMA. J Polym Sci B Polym Phys. 2006;44(4):756–763.
  • Gupta P, Thilagavathi R, Chakraborti AK, et al. Role of molecular interaction in stability of celecoxib-PVP amorphous systems . Mol Pharm. 2005;2(5):384–391.
  • Thomas LC. Modulated DSC Paper #1 Why Modulated DSC?; An Overview and Summary of Advantages and Disadvantages Relative to Traditional DS, 2005. http://scholar.googleusercontent.com/scholar?q=cache:_e-4wtBhQsMJ:scholar.google.com/&hl=en&as_sdt=0,28. (accessed May 18, 2020).
  • Brown ME, Gallagher PK. Handbook of thermal analysis and calorimetry: Applications to inorganic and miscellaneous materials. Amsterdam, The Netherlands: Elsevier; 2003.
  • Coleman NJ, Craig DQM. Modulated temperature differential scanning calorimetry: A novel approach to pharmaceutical thermal analysis. Int. J. Pharm. 1996;135(1-2):13–29.
  • Ma X, Williams RO. Characterization of amorphous solid dispersions: An update. J. Drug Deliv. Sci. Technol. 2019;50:113–124.
  • Gokhale MY, Mantri RV. Chapter 4 - API Solid-form screening and selection. In: Y. Qiu, Y. Chen, G.G.Z. Zhang, L. Yu, R.V. Mantri, editors. Dev. Solid Oral Dos. Forms Second Ed., Boston: Academic Press; 2017. p. 85–112. https://doi.org/https://doi.org/10.1016/B978-0-12-802447-8.00004-2.
  • Fan W, Zhu W, Zhang X, et al. Application of the combination of ball-milling and hot-melt extrusion in the development of an amorphous solid dispersion of a poorly water-soluble drug with high melting point. RSC Adv. 2019;9(39):22263–22273.
  • Rumondor ACF, Ivanisevic I, Bates S, et al. Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm Res. 2009;26(11):2523–2534.
  • Newman A, Engers D, Bates S, et al. Characterization of amorphous API:Polymer mixtures using X-ray powder diffraction. J Pharm Sci. 2008;97(11):4840–4856.
  • Bates S, Zografi G, Engers D, et al. Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns. Pharm Res. 2006;23(10):2333–2349.
  • Sindhu R, Binod P, Pandey A. Chapter 17 - microbial poly-3-hydroxybutyrate and related copolymers. In: A. Pandey, R. Höfer, M. Taherzadeh, K.M. Nampoothiri, C. Larroche, editors. Ind. Biorefineries White Biotechnol. Amsterdam: Elsevier; 2015. p. 575–605. https://doi.org/https://doi.org/10.1016/B978-0-444-63453-5.00019-7.
  • Coates J. Interpretation of infrared spectra, a practical approach. In: Encycl. Anal. Chem. Chichester, UK: American Cancer Society, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.