310
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

An updated review of mesoporous carbon as a novel drug delivery system

ORCID Icon, , , , , , & ORCID Icon show all
Pages 1029-1037 | Received 09 Nov 2020, Accepted 13 Jun 2021, Published online: 11 Oct 2021

References

  • Gencoglu MF, Spurri A, Franko M, et al. Biocompatibility of soft-templated mesoporous carbons. ACS Appl Mater Interfaces. 2014;6(17):15068–15077.
  • Wang L, Liu F, Ning Y, et al. Biocompatible mesoporous hollow carbon nanocapsules for high performance supercapacitors. Sci Rep. 2020;10(1):1–9.
  • Zhao Q, Lin Y, Han N, et al. Mesoporous carbon nanomaterials in drug delivery and biomedical application. Drug Deliv. 2017;24(sup1):94–107.
  • Niu X, Wan L, Hou Z, et al. Mesoporous carbon as a novel drug carrier of fenofibrate for enhancement of the dissolution and oral bioavailability. Int J Pharm. 2013;452(1–2):382–389.
  • Liu C, Yu M, Li Y, et al. Synthesis of mesoporous carbon nanoparticles with large and tunable pore sizes. Nanoscale. 2015;7(27):11580–11590.
  • Mirzaei M, Zarch MB, Darroudi M, et al. Silica mesoporous structures: effective nanocarriers in drug delivery and nanocatalysts. Appl Sci. 2020;10(21):7533.
  • Arab Fashapoyeh M, Mirzaei Shahrabi M, Eshtiagh-Hosseini H. Recent advances in crystal engineering from nanoscience views: a brief review. Nanochemistry Res. 2017;2(1):71–85.
  • Singh RK, Knowles JC, Kim H-W. Advances in nanoparticle development for improved therapeutics delivery: nanoscale topographical aspect. J Tissue Eng. 2019;10:2041731419877528.
  • Gisbert-Garzarán M, Manzano M, Vallet-Regí M. pH-responsive mesoporous silica and carbon nanoparticles for drug delivery. Bioeng Basel Switz. 2017;4(4):3.
  • Qian W, Qian M, Wang Y, et al. Combination glioma therapy mediated by a dual-targeted delivery system constructed using OMCN–PEG–Pep22/DOX. Small. 2018;14(42):1801905.
  • Li X, Yan Y, Lin Y, et al. Hollow mesoporous carbon as a near-infrared absorbing carrier compared with mesoporous carbon nanoparticles for chemo-photothermal therapy. J Colloid Interface Sci. 2017;494:159–169.
  • Qiu Y, Ding D, Sun W, et al. Hollow mesoporous carbon nanospheres for imaging-guided light-activated synergistic thermo-chemotherapy. Nanoscale. 2019;11(35):16351–16361.
  • Saha D, Heldt CL, Gencoglu MF, et al. A study on the cytotoxicity of carbon-based materials. Mater Sci Eng C Mater Biol Appl. 2016;68:101–108.
  • Gui X, Chen Y, Zhang Z, et al. Fluorescent hollow mesoporous carbon spheres for drug loading and tumor treatment through 980-nm laser and microwave co-irradiation. Biomaterials. 2020;248:120009.
  • Rammohan A, Tayal L, Kumar A, et al. Fabrication of polymer-modified monodisperse mesoporous carbon particles by template-based approach for drug delivery. RSC Adv. 2013;3(6):2008–2016.
  • Han C, Huang H, Dong Y, et al. A comparative study of the use of mesoporous carbon and mesoporous silica as drug carriers for oral delivery of the water-insoluble drug carvedilol. Molecules. 2019;24(9):1770.
  • Lea T. Caco-2 cell line. In: The impact of food bioactives on health. Cham: Springer; 2015. p. 103–111.
  • Brown SC, Kamal M, Nasreen N, et al. Influence of shape, adhension and simulated lung mechanics on amorphous silica nanoparticle toxicity. Adv Powder Technol. 2007;18(1):69–79.
  • Lin Y-S, Haynes CL. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc. 2010;132(13):4834–4842.
  • Guo L, Zhang J, He Q, et al. Preparation of millimetre-sized mesoporous carbon spheres as an effective bilirubin adsorbent and their blood compatibility. Chem Commun. 2010;46(38):7127–7129.
  • Li X, Wang L, She L, et al. Immunotoxicity assessment of ordered mesoporous carbon nanoparticles modified with PVP/PEG. Colloids Surf B Biointerfaces. 2018;171:485–493.
  • Zhou M, Zhao Q, Wu Y, et al. Mesoporous carbon nanoparticles as multi-functional carriers for cancer therapy compared with mesoporous silica nanoparticles. Aaps Pharmscitech. 2020;21(2):1–12.
  • Zaffaroni A. Drug-delivery system [Internet]. US3854480A, 1974 [cited 2020 Sep 9]. Available from: https://patents.google.com/patent/US3854480A/en
  • Liu D, Yang F, Xiong F, et al. The smart drug delivery system and its clinical Potential. Theranostics. 2016;6(9):1306–1323.
  • Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157–170.
  • Urquhart J. Role of patient compliance in clinical pharmacokinetics. A review of recent research. Clin Pharmacokinet. 1994;27(3):202–215.
  • Borovac JA. Side effects of a dopamine agonist therapy for Parkinson’s disease: a mini-review of clinical pharmacology. Yale J Biol Med. 2016;89(1):37–47.
  • Fields AM, Fields KM, Cannon JW. Closed-loop systems for drug delivery. Curr Opin Anaesthesiol. 2008;21(4):446–451.
  • Lu Y, Aimetti AA, Langer R, et al. Bioresponsive materials. Nat Rev Mater. 2016;2(1):1–17.
  • Lu Y, Sun W, Gu Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. J Control Release. 2014;194:1–19.
  • Yu J, Zhang Y, Yan J, et al. Advances in bioresponsive closed-loop drug delivery systems. Int J Pharm. 2018;544(2):350–357.
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71.
  • Zhao P, Wang L, Sun C, et al. Uniform mesoporous carbon as a carrier for poorly water soluble drug and its cytotoxicity study. Eur J Pharm Biopharm. 2012;80(3):535–543.
  • Lu H, Yang G, Ran F, et al. Polymer-functionalized mesoporous carbon nanoparticles on overcoming multiple barriers and improving oral bioavailability of probucol. Carbohydr Polym. 2020;229:115508.
  • Zhu W, Zhao Q, Zheng X, et al. Mesoporous carbon as a carrier for celecoxib: the improved inhibition effect on MDA-MB-231 cells migration and invasion. Asian J Pharm Sci. 2014;9(2):82–91.
  • Zhu W, Zhao Q, Sun C, et al. Mesoporous carbon with spherical pores as a carrier for celecoxib with needle-like crystallinity: Improve dissolution rate and bioavailability. Mater Sci Eng C Mater Biol Appl. 2014;39:13–20.
  • Wan L, Wang X, Zhu W, et al. Folate-polyethyleneimine functionalized mesoporous carbon nanoparticles for enhancing oral bioavailability of paclitaxel. Int J Pharm. 2015;484(1–2):207–217.
  • Zhang Y, Zhi Z, Li X, et al. Carboxylated mesoporous carbon microparticles as new approach to improve the oral bioavailability of poorly water-soluble carvedilol. Int J Pharm. 2013;454(1):403–411.
  • Castillo RR, Lozano D, González B, et al. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update. Expert Opin Drug Deliv. 2019;16(4):415–439.
  • Wan L, Jiao J, Cui Y, et al. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanotechnology. 2016;27(13):135102.
  • Zhou L, Dong K, Chen Z, et al. Near-infrared absorbing mesoporous carbon nanoparticle as an intelligent drug carrier for dual-triggered synergistic cancer therapy. Carbon. 2015;82:479–488.
  • Mekaru H, Lu J, Tamanoi F. Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv Drug Deliv Rev. 2015;95:40–49.
  • Li Z, Zhang Y, Feng N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin Drug Deliv. 2019;16(3):219–237.
  • Zhang L, Li Y, Jin Z, et al. Mesoporous carbon/CuS nanocomposites for pH-dependent drug delivery and near-infrared chemo-photothermal therapy. RSC Adv. 2015;5(113):93226–93233.
  • Chen L, Zhang H, Zheng J, et al. Thermo-sensitively and magnetically ordered mesoporous carbon nanospheres for targeted controlled drug release and hyperthermia application. Mater Sci Eng C Mater Biol Appl. 2018;84:21–31.
  • Wang H, Sun Y, Yi J, et al. Fluorescent porous carbon nanocapsules for two-photon imaging, NIR/pH dual-responsive drug carrier, and photothermal therapy. Biomaterials. 2015;53:117–126.
  • Zhang S, Qian X, Zhang L, et al. Composition-property relationships in multifunctional hollow mesoporous carbon nanosystems for PH-responsive magnetic resonance imaging and on-demand drug release . Nanoscale. 2015;7(17):7632–7643.
  • Zhang Y, Han L, Hu L-L, et al. Mesoporous carbon nanoparticles capped with polyacrylic acid as drug carrier for bi-trigger continuous drug release. J Mater Chem B. 2016;4(30):5178–5184.
  • Huang X, Wu S, Du X. Gated mesoporous carbon nanoparticles as drug delivery system for stimuli-responsive controlled release. Carbon. 2016;101:135–142.
  • Zhang Y, Han L, Hu LL, et al. Mesoporous carbon nanoparticles capped with polyacrylic acid as drug carrier for bi-trigger continuous drug release. J Mater Chem B. 2016;4(30):5178–5184.
  • Kiyose K, Hanaoka K, Oushiki D, et al. Hypoxia-sensitive fluorescent probes for in vivo real-time fluorescence imaging of acute ischemia. J Am Chem Soc. 2010;132(45):15846–15848.
  • Thambi T, Deepagan V, Yoon HY, et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials. 2014;35(5):1735–1743.
  • Perche F, Biswas S, Wang T, et al. Hypoxia‐targeted siRNA delivery. Angew Chem. 2014;126(13):3430–3434.
  • Khatoon S, Han HS, Jeon J, et al. Hypoxia-responsive mesoporous nanoparticles for doxorubicin delivery. Polymers. 2018;10(4):390.
  • Alvarez Lorenzo C, Bromberg L, Concheiro A. Light-sensitive intelligent drug delivery systems . Photochem Photobiol. 2009;85(4):848–860.
  • Bawa P, Pillay V, Choonara YE, et al. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater. 2009;4(2):022001.
  • Gao S, Tang G, Hua D, et al. Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B. 2019;7(5):709–729.
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.
  • Gandhi A, Paul A, Sen SO, et al. Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci. 2015;10(2):99–107.
  • Kotsuchibashi Y, Ebara M, Aoyagi T, et al. Recent advances in dual temperature responsive block copolymers and their potential as biomedical applications. Polymers. 2016;8(11):380.
  • Moghanjoughi AA, Khoshnevis D, Zarrabi A. A concise review on smart polymers for controlled drug release. 2016;6(3):333–40.
  • Park JH, Lee YH, Oh SG. Preparation of thermosensitive PNIPAm-grafted mesoporous silica particles. Macromol Chem Phys. 2007;208(22):2419–2427.
  • Yang Y, Yan X, Cui Y, et al. Preparation of polymer-coated mesoporous silica nanoparticles used for cellular imaging by a “graft-from” method. J Mater Chem. 2008;18(47):5731–5737.
  • Berry CC. Possible exploitation of magnetic nanoparticle-cell interaction for biomedical applications. J Mater Chem. 2005;15(5):543–547.
  • Tartaj P, Del Puerto Morales M, Veintemillas-Verdaguer S, et al. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys Appl Phys. 2003;36(13):R182–R197.
  • Freeman MW, Arrott A, Watson JHL. Magnetism in medicine. J Appl Phys. 1960;404(5):127–129.
  • Goodwin S, Peterson C, Hoh C, et al. Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy. J Magn Magn Mater. 1999;194(1–3):132–139.
  • Arcos D, Fal-Miyar V, Ruiz-Hernández E, et al. Supramolecular mechanisms in the synthesis of mesoporous magnetic nanospheres for hyperthermia. J Mater Chem. 2012;22(1):64–72.
  • Rwei AY, Paris JL, Wang B, et al. Ultrasound-triggered local anaesthesia. Nat Biomed Eng. 2017;1(8):644–653.
  • Manzano M, Vallet-Regí M. Ultrasound responsive mesoporous silica nanoparticles for biomedical applications. Chem Commun. 2019;55(19):2731–2740.
  • Kwok CS, Mourad PD, Crum LA, et al. Self-assembled molecular structures as ultrasonically-responsive barrier membranes for pulsatile drug delivery. J Biomed Mater Res. 2001;57(2):151–164.
  • Gao ZG, Fain HD, Rapoport N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J Controlled Release. 2005;102(1):203–222.
  • Kim HJ, Matsuda H, Zhou H, et al. Ultrasound-triggered smart drug release from a poly(dimethylsiloxane)- mesoporous silica composite. Adv Mater. 2006;18(23):3083–3088.
  • Amidon GL, Lennernäs H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–420.
  • Göke K, Lorenz T, Repanas A, et al. Novel strategies for the formulation and processing of poorly water-soluble drugs. Eur J Pharm Biopharm. 2018;126:40–56.
  • Zhang X, Xing H, Zhao Y, et al. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics. 2018;10(3):74.
  • Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9(6):304–316.
  • Rodriguez-Aller M, Guillarme D, Veuthey J-L, et al. Strategies for formulating and delivering poorly water-soluble drugs. J Drug Deliv Sci Technol. 2015;30:342–351.
  • Dressman JB, Amidon GL, Reppas C, et al. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res. 1998;15(1):11–22.
  • Kumar S, Bhargava D, Thakkar A, et al. Drug carrier systems for solubility enhancement of BCS class II drugs: a critical review. Crit Rev Ther Drug Carr Syst. 2013;30(3):217–256.
  • Zhang Y, Han L, Zhang Y, et al. Glutathione-mediated mesoporous carbon as a drug delivery nanocarrier with carbon dots as a cap and fluorescent tracer. Nanotechnology. 2016;27(35):355102.
  • Gao Y, Liu T, Liu X, et al. Preparation of paclitaxel-folic acid functionalized gelatin grafted mesoporous hollow carbon nanospheres for enhancing antitumor effects toward liver cancer (SMMC-7721) cell lines. J Biomater Appl. 2020;34(8):1071–1080.
  • Qu F, Zhu G, Lin H, et al. A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials. J Solid State Chem. 2006;179(7):2027–2035.
  • Horcajada P, Rámila A, Pérez-Pariente J, et al. Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater. 2004;68(1–3):105–109.
  • Wang X, Liu P, Tian Y. Ordered mesoporous carbons for ibuprofen drug loading and release behavior. Microporous Mesoporous Mater. 2011;142(1):334–340.
  • Liu J, Zhao Y, Cui Y, et al. A Eu3+/Gd3+-EDTA-doped structurally controllable hollow mesoporous carbon for improving the oral bioavailability of insoluble drugs and in vivo tracing. Nanotechnology. 2016;27(31):315101–315109.
  • Chen Y, Chen H, Shi J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater. 2013;25(23):3144–3176.
  • Chen Y, Xu P, Wu M, et al. Colloidal RBC-shaped, hydrophilic, and hollow mesoporous carbon nanocapsules for highly efficient biomedical engineering. Adv Mater. 2014;26(25):4294–4301.
  • Zhu J, Liao L, Bian X, et al. pH-Controlled delivery of doxorubicin to cancer cells, based on small mesoporous carbon nanospheres. Small. 2012;8(17):2715–2716.
  • Ulfa M, Prasetyoko D. Synthesis of mesoporous carbon CMK-3 and CMK-5 materials and their application for drug loading-release system. KLS. 2019;4(12):1–9.
  • Zhang C, Zhao Q, Wan L, et al. Poly dimethyl diallyl ammonium coated CMK-5 for sustained oral drug release. Int J Pharm. 2014;461(1–2):171–180.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.