110
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of the osteogenic potential of crocin-incorporated collagen scaffold on the bone marrow mesenchymal stem cells

, , , ORCID Icon & ORCID Icon
Pages 1439-1446 | Received 01 Feb 2021, Accepted 20 Oct 2021, Published online: 15 Nov 2021

References

  • Eppley B, Sadove A. Management of alveolar cleft bone grafting—state of the art. Cleft Palate Craniofac J. 2000;37(3):229–233.
  • Liou E, Chen P, Huang C-S, et al. Interdental distraction osteogenesis and rapid orthodontic tooth movement: a novel approach to approximate a wide alveolar cleft or bony defect. Plast Reconstr Surg. 2000;105(4):1262–1272.
  • Arvidson K, Abdallah B, Applegate L, et al. Bone regeneration and stem cells. J Cell Mol Med. 2011;15(4):718–746.
  • Fan J, Cao L-G, Wu T, et al. The dose–effect of icariin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cells. Molecules. 2011;16(12):10123–10133.
  • Ramezani T, Baharara J, Saghiri N. The effect of saffron aqueous extract [Crocus sativus L.] on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Birjand Univ Med Sci. 2014;21:169–178.
  • Dimitriou R, Jones E, McGonagle D, et al. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66.
  • Alavizadeh SH, Hosseinzadeh H. Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol. 2014;64:65–80.
  • Kalalinia F, Ghasim H, Farzad SA, et al. Comparison of the effect of crocin and crocetin, two major compounds extracted from saffron, on osteogenic differentiation of mesenchymal stem cells. Life Sci. 2018;208:262–267.
  • Chen Q-Z, Harding SE, Ali NN, et al. Biomaterials in cardiac tissue engineering: ten years of research survey. Mater Sci Eng Rep. 2008;59(1–6):1–37.
  • Lin Z, Solomon KL, Zhang X, et al. In vitro evaluation of natural marine sponge collagen as a scaffold for bone tissue engineering. Int J Biol Sci. 2011;7(7):968–977.
  • Hosseinkhani H, Hong P-D, Yu D-S, et al. Development of 3D in vitro platform technology to engineer mesenchymal stem cells. Int J Nanomedicine. 2012;7:3035–3043.
  • Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–2543.
  • Donzelli E, Salvade A, Mimo P, et al. Mesenchymal stem cells cultured on a collagen scaffold: in vitro osteogenic differentiation. Arch Oral Biol. 2007;52(1):64–73.
  • Hosseinkhani H, Hosseinkhani M, Tian F, et al. Bone regeneration on a collagen sponge self-assembled peptide-amphiphile nanofiber hybrid scaffold. Tissue Eng. 2007;13(1):11–20.
  • Toosi S, Naderi‐Meshkin H, Kalalinia F, et al. PGA‐incorporated collagen: toward a biodegradable composite scaffold for bone‐tissue engineering. J Biomed Mater Res. 2016;104(8):2020–2028.
  • Kandjani SA, Chan S, Barille R, et al. Linear and nonlinear holographic gratings in saffron. Nonlinear Opt Quant Opt. 2007;36:195.
  • Toosi S, Naderi-Meshkin H, Kalalinia F, et al. Bone defect healing is induced by collagen sponge/polyglycolic acid. J Mater Sci Mater Med. 2019;30(3):33.
  • Abnosi MH, Mehranjani MS, Shariatzadeh MA, et al. Para-nonylphenol impairs osteogenic differentiation of rat bone marrow mesenchymal stem cells by influencing the osteoblasts mineralization. Iran J Basic Med Sci. 2012;15:1131.
  • Saud B, Malla R, Shrestha K. A review on the effect of plant extract on mesenchymal stem cell proliferation and differentiation. Stem Cells Int. 2019;2019:7513404.
  • Xue W, Yu J, Chen W. Plants and their bioactive constituents in mesenchymal stem cell-based periodontal regeneration: a novel prospective. BioMed Res Int. 2018;2018:1–15.
  • Gorabi AM, Kiaie N, Hajighasemi S, et al. The effect of curcumin on the differentiation of mesenchymal stem cells into mesodermal lineage. Molecules. 2019;24(22):4029.
  • Grover CN, Cameron RE, Best SM. Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. J Mech Behav Biomed Mater. 2012;10:62–74.
  • Perumal S, Kumar Ramadass S, Madhan B. Sol–gel processed mupirocin silica microspheres loaded collagen scaffold: a synergistic bio-composite for wound healing. Eur J Pharm Sci. 2014;52:26–33.
  • Tierney CM, Haugh MG, Liedl J, et al. The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. J Mech Behav Biomed Mater. 2009;2(2):202–209.
  • Murphy CM, O'Brien FJ. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adh Migr. 2010;4(3):377–381.
  • Fernandes LL, Resende CX, Tavares DS, et al. Cytocompatibility of chitosan and collagen–chitosan scaffolds for tissue engineering. Polímeros. 2011;21(1):1–6.
  • Mao Z, Shi H, Guo R, et al. Enhanced angiogenesis of porous collagen scaffolds by incorporation of TMC/DNA complexes encoding vascular endothelial growth factor. Acta Biomater. 2009;5(8):2983–2994.
  • Lu Q, Zhang S, Hu K, et al. Cytocompatibility and blood compatibility of multifunctional fibroin/collagen/heparin scaffolds. Biomaterials. 2007;28(14):2306–2313.
  • Datta HK, Ng WF, Walker JA, et al. The cell biology of bone metabolism. J Clin Pathol. 2008;61(5):577–587.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.