159
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Structure activity evaluation and computational analysis identify potent, novel 3-benzylidene chroman-4-one analogs with anti-fungal, anti-oxidant, and anti-cancer activities

, , , , , & ORCID Icon show all
Pages 1459-1468 | Received 19 Mar 2021, Accepted 17 Oct 2021, Published online: 17 Nov 2021

References

  • Takao K, Yamashita M, Yashiro A, et al. Synthesis and biological evaluation of 3-benzylidene-4-chromanone derivatives as free radical scavengers and α-glucosidase inhibitors. Chem Pharm Bull. 2016;64(8):1203–1207.
  • Lin LG, Liu QY, Ye Y. Naturally occurring homoisoflavonoids and their pharmacological activities. Planta Med. 2014;80(13):1053–1066.
  • Yan J, Sun LR, Zhou ZY, et al. Homoisoflavonoids from the medicinal plant Portulaca oleracea. Phytochemistry. 2012;80:37–41.
  • Siddaiah V, Maheswara M, Venkata Rao C, et al. Synthesis, structural revision, and antioxidant activities of antimutagenic homoisoflavonoids from Hoffmanosseggia intricata. Bioorg Med Chem Lett. 2007;17(5):1288–1290.
  • Famuyiwa SO, Ntumy AN, Andrae-Marobela K, et al. A new homoisoflavonoid and the bioactivities of some selected homoisoflavonoids from the inter-bulb surfaces of Scilla nervosa subsp. rigidifolia. S Afr J Bot. 2013;88:17–22.
  • Qiu J, Xu J, Shi J. Fusarium toxins in Chinese wheat since the 1980s. Toxins. 2019;11(5):248.
  • Schuster E, Dunn-Coleman N, Frisvad JC, et al. On the safety of Aspergillus niger – a review. Appl Microbiol Biotechnol. 2002;59(4–5):426–435.
  • Steinbach WJ, Perfect JR, Schell WA, et al. In vitro analyses, animal models, and 60 clinical cases of invasive Aspergillus terreus infection. Antimicrob Agents Chemother. 2004;48(9):3217–3225.
  • Chakrabarti A, Singh R. The emerging epidemiology of mould infections in developing countries. Curr Opin Infect Dis. 2011;24(6):521–526.
  • Amare MG, Keller NP. Molecular mechanisms of Aspergillus flavus secondary metabolism and development. Fung Genet Biol. 2014;66:11–18.
  • Olea AF, Bravo A, Martínez R, et al. Antifungal activity of eugenol derivatives against Botrytis cinerea. Molecules. 2019;24(7):1239.
  • Fayi MA, Alamri A, Rajagopalan P. IOX-101 reverses drug resistance through suppression of Akt/mTOR/NF-κB signaling in cancer stem cell-like, sphere-forming NSCLC cell. Oncol Res. 2020;28(2):177–189.
  • Dejonghe W, Russinova E. Target identification strategies in plant chemical biology. Front Plant Sci. 2014;5:352.
  • Roy SK, Kumari N, Gupta S, et al. 7-Hydroxy-(E)-3-phenylmethylene-chroman-4-one analogues as efflux pump inhibitors against Mycobacterium smegmatis mc2 155. Eur J Med Chem. 2013;66:499–507.
  • Foroumadi A, Samzadeh-Kermani A, Emami S, et al. Synthesis and antioxidant properties of substituted 3-benzylidene-7-alkoxychroman-4-ones. Bioorg Med Chem Lett. 2007;17(24):6764–6769.
  • Desideri N, Bolasco A, Fioravanti R, et al. Homoisoflavonoids: natural scaffolds with potent and selective monoamine oxidase-B inhibition properties. J Med Chem. 2011;54(7):2155–2164.
  • Manavathu EK, Alangaden GJ, Lerner SA. A comparative study of the broth micro- and macro-dilution techniques for the determination of the in vitro susceptibility of Aspergillus fumigatus. Can J Microbiol. 1996;42(9):960–964.
  • Xie JL, Singh-Babak SD, Cowen LE. Minimum inhibitory concentration (MIC) assay for antifungal drugs. Bio-protocol. 2012;2(20):e252.
  • Atolani O, Adamu N, Oguntoye OS, et al. Chemical characterization, antioxidant, cytotoxicity, anti-Toxoplasma gondii and antimicrobial potentials of the citrus sinensis seed oil for sustainable cosmeceutical production. Heliyon. 2020;6(2):e03399.
  • Braca A, De Tommasi N, Di Bari L, et al. Antioxidant principles from Bauhinia tarapotensis. J Nat Prod. 2001;64(7):892–895.
  • Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337–341.
  • Rajagopalan P, Dera A, Abdalsamad MR, et al. Rational combinations of indirubin and arylidene derivatives exhibit synergism in human non-small cell lung carcinoma cells. J Food Biochem. 2019;43(7):e12861.
  • Dera AA, Rajagopalan P, Al Fayi M, et al. Indirubin-3-monoxime and thymoquinone exhibit synergistic efficacy as therapeutic combination in in-vitro and in-vivo models of lung cancer. Arch Pharmacal Res. 2020;43(6):655–665.
  • Bakkali F, Averbeck S, Averbeck D, et al. Biological effects of essential oils – a review. Food Chem Toxicol. 2008;46(2):446–475.
  • Livingstone R. Naturally occurring oxygen ring compounds. Nature. 1963;200(4906):509–509.
  • Kabbe H-J, Widdig A. Synthesis and reactions of 4-chromanones. Angew Chem Int Ed. 1982;21(4):247–256.
  • Aurrand-Lions M, Galland F, Bazin H, et al. Vanin-1, a novel GPI-linked perivascular molecule involved in thymus homing. Immunity. 1996;5(5):391–405.
  • Jansen PA, Kamsteeg M, Rodijk-Olthuis D, et al. Expression of the vanin gene family in normal and inflamed human skin: induction by proinflammatory cytokines. J Investig Dermatol. 2009;129(9):2167–2174.
  • Min-Oo G, Fortin A, Pitari G, et al. Complex genetic control of susceptibility to malaria: positional cloning of the Char9 locus. J Exp Med. 2007;204(3):511–524.
  • Pouyet L, Roisin-Bouffay C, Clément A, et al. Epithelial vanin-1 controls inflammation-driven carcinogenesis in the colitis-associated colon cancer model. Inflamm Bowel Dis. 2010;16(1):96–104.
  • Mobley JA, Brueggemeier RW. Estrogen receptor-mediated regulation of oxidative stress and DNA damage in breast cancer. Carcinogenesis. 2004;25(1):3–9.
  • Noushini S, Alipour E, Emami S, et al. Synthesis and cytotoxic properties of novel (E)-3-benzylidene-7-methoxychroman-4-one derivatives. Daru. 2013;21(1):2231.
  • Rajagopalan P, Alahmari KA, Elbessoumy AA, et al. Biological evaluation of 2-arylidene-4,7-dimethyl indan-1-one (FXY-1): a novel Akt inhibitor with potent activity in lung cancer. Cancer Chemother Pharmacol. 2016;77(2):393–404.
  • Balasubramaniam M, Lakkaniga NR, Dera AA, et al. FCX-146, a potent allosteric inhibitor of Akt kinase in cancer cells: lead optimization of the second-generation arylidene indanone scaffold. Biotechnol Appl Biochem. 2021;68(1):82–91.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.