1,045
Views
6
CrossRef citations to date
0
Altmetric
Review Article

A key role by polymers in microneedle technology: a new era

, , , , , & ORCID Icon show all
Pages 1713-1732 | Received 31 Oct 2021, Accepted 22 Mar 2022, Published online: 06 Apr 2022

References

  • Singh TR, Garland MJ, Cassidy CM, et al. Microporation techniques for enhanced delivery of therapeutic agents. Recent Pat Drug Deliv Formul. 2010;4(1):1–17.
  • Bariya SH, Gohel MC, Mehta TA, et al. Microneedles: an emerging transdermal drug delivery system. J Pharm Pharmacol. 2012;64(1):11–29.
  • Kolluru C, Williams M, Chae J, et al. Recruitment and collection of dermal interstitial fluid using a microneedle patch. Adv Healthc Mater. 2019;8(3):e1801262.
  • Hauri AM, Armstrong GL, Hutin YJ. The global burden of disease attributable to contaminated injections given in health care settings. Int J STD Aids. 2004;15(1):7–16.
  • Davies PN, Worthington HEC, Podczeck F, et al. The determination of the mechanical strength of tablets of different shapes. Eur J Pharm Biopharm. 2007;67(1):268–276.
  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–1268.
  • Ma G, Wu C. Microneedle, bio-microneedle and bio-inspired microneedle: a review. J Control Release. 2017;251:11–23.
  • SMVG. United States Patent, Patentimages. Storage. Googleapis; 1972. p. 1–4.
  • Kim Y-C, Park J-H, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547–1568.
  • Chen J, Huang W, Huang Z, et al. Fabrication of tip-dissolving microneedles for transdermal drug delivery of meloxicam. AAPS PharmSciTech. 2018;19(3):1141–1151.
  • Yang G, Chen Q, Wen D, et al. A therapeutic microneedle patch made from Hair-Derived keratin for promoting hair regrowth. ACS Nano. 2019;13(4):4354–4360.
  • Sonetha V, Majumdar S, Shah S. Step-wise micro-fabrication techniques of microneedle arrays with applications in transdermal drug delivery – a review. J Drug Delivery Sci Technol. 2022;68:103119.
  • Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release. 2007;117(2):227–237.
  • Johnson AR, Procopio AT. Low cost additive manufacturing of microneedle masters. 3D Print Med. 2019;5(1):2.
  • Denet A-R, Vanbever R, Préat V. Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev. 2004;56(5):659–674.
  • Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2004;56(5):603–618.
  • Larrañeta E, Lutton REM, Woolfson AD, et al. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep. 2016;104:1–32.
  • Prausnitz MR. Engineering microneedle patches for vaccination and drug delivery to skin. Annu Rev Chem Biomol Eng. 2017;8(1):177–200.
  • Gupta J, Gill HS, Andrews SN, et al. Kinetics of skin resealing after insertion of microneedles in human subjects. J Control Release. 2011;154(2):148–155.
  • Gupta J, Gill HS, Andrews SN, et al. Kinetics of skin resealing after insertion of microneedles in human subjects. J Control Release. 2011;154(2):148–155.
  • An M, Liu H. Dissolving microneedle arrays for transdermal delivery of amphiphilic vaccines. Small. 2017;13(26):1700164.
  • Takano N, Tachikawa H, Miyano T, et al. Insertion testing of polyethylene glycol microneedle array into cultured human skin with biaxial tension. J Solid Mech Mater Eng. 2009;3:604–612.
  • Benson HAE, Namjoshi S. Proteins and peptides: strategies for delivery to and across the skin. J Pharm Sci. 2008;97(9):3591–3610.
  • Niu L, Chu LY, Burton SA, et al. Intradermal delivery of vaccine nanoparticles using hollow microneedle array generates enhanced and balanced immune response. J Control Release. 2019;294:268–278.
  • Suzuki M, Takahashi T, Aoyagi S. 3D laser lithographic fabrication of hollow microneedle mimicking mosquitos and its characterisation. Int J Nanotechnol. 2018;15:157.
  • van der Maaden K, Sekerdag E, Schipper P, et al. Layer-by-layer assembly of inactivated poliovirus and N-trimethyl chitosan on pH-sensitive microneedles for dermal vaccination. Langmuir. 2015;31(31):8654–8660.
  • Yuen C, Liu Q. Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: a skin-mimicking phantom study. J Biomed Opt. 2015;20(6):61102.
  • Lee KJ, Jeong SS, Roh DH, et al. A practical guide to the development of microneedle systems – in clinical trials or on the market. Int J Pharm. 2020;573:118778.
  • Donnelly RF, Singh TRR, Alkilani AZ, et al. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: potential for enhanced patient safety. Int J Pharm. 2013;451(1–2):76–91.
  • Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–1258.
  • Dalvi M, Kharat P, Thakor P, et al. Panorama of dissolving microneedles for transdermal drug delivery. Life Sci. 2021;284:119877.
  • Wei-Ze L, Mei-Rong H, Jian-Ping Z, et al. Super-short solid silicon microneedles for transdermal drug delivery applications. Int J Pharm. 2010;389(1–2):122–129.
  • Davidson A, Al-Qallaf B, Das DB. Transdermal drug delivery by coated microneedles: geometry effects on effective skin thickness and drug permeability. Chem Eng Res Des. 2008;86(11):1196–1206.
  • Shakya AK, Lee CH, Gill HS. Cutaneous vaccination with coated microneedles prevents development of airway allergy. J Control Release. 2017;265:75–82.
  • Lee JW, Park J-H, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29(13):2113–2124.
  • Leone M, Mönkäre J, Bouwstra JA, et al. Dissolving microneedle patches for dermal vaccination. Pharm Res. 2017;34(11):2223–2240.
  • Arshad MS, Zafar S, Zahra AT, et al. Fabrication and characterisation of self-applicating heparin sodium microneedle patches. J Drug Target. 2021;29(1):60–68.
  • Daugimont L, Baron N, Vandermeulen G, et al. Hollow microneedle arrays for intradermal drug delivery and DNA electroporation. J Membr Biol. 2010;236(1):117–125.
  • Jun H, Han M-R, Kang N-G, et al. Use of hollow microneedles for targeted delivery of phenylephrine to treat fecal incontinence. J Control Release. 2015;207:1–6.
  • Perennes F, Marmiroli B, Matteucci M, et al. Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. J Micromech Microeng. 2006;16(3):473.
  • Ita K. Transdermal delivery of drugs with microneedles: strategies and outcomes. J Drug Delivery Sci Technol. 2015;29:16–23.
  • Ita K. Dissolving microneedles for transdermal drug delivery: advances and challenges. Biomed Pharmacother. 2017;93:1116–1127.
  • Chen M-C, Chan H-A, Ling M-H, et al. Implantable polymeric microneedles with phototriggerable properties as a patient-controlled transdermal analgesia system [https://doi.org/10.1039/C6TB02718K. J Mater Chem B. 2017;5(3):496–503.
  • Gao Y, Hou M, Yang R, et al. Highly porous silk fibroin scaffold packed in PEGDA/sucrose microneedles for controllable transdermal drug delivery. Biomacromolecules. 2019;20(3):1334–1345.
  • Yu X, Wang C, Wang Y, et al. Microneedle array patch made of kangfuxin/chitosan/fucoidan complex enables full-thickness wound healing. Front Chem. 2022;10:1–9.
  • Nejad HR, Sadeqi A, Kiaee G, et al. Low-cost and cleanroom-free fabrication of microneedles. Microsyst Nanoeng. 2018;4(1):17073.
  • Doppalapudi S, Jain A, Khan W, et al. Biodegradable polymers—an overview. Polym Adv Technol. 2014;25(5):427–435.
  • Hong X, Wei L, Wu F, et al. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des Devel Ther. 2013;7:945–952.
  • Arya J, Henry S, Kalluri H, et al. Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects. Biomaterials. 2017;128:1–7.
  • Du G, Sun X. Current advances in sustained release microneedles. Pharmaceut Fronts. 2020;2(1):e11–e22.
  • Ye Y, Yu J, Wen D, et al. Polymeric microneedles for transdermal protein delivery. Adv Drug Deliv Rev. 2018;127:106–118.
  • Hiraishi Y, Nakagawa T, Quan Y-S, et al. Performance and characteristics evaluation of a sodium hyaluronate-based microneedle patch for a transcutaneous drug delivery system. Int J Pharm. 2013;441(1–2):570–579.
  • Kim S, Lee J, Shayan FL, et al. Physicochemical study of ascorbic acid 2-glucoside loaded hyaluronic acid dissolving microneedles irradiated by electron beam and gamma ray. Carbohydr Polym. 2018;180:297–303.
  • Ito Y, Kashiwara S, Fukushima K, et al. Two-layered dissolving microneedles for percutaneous delivery of sumatriptan in rats. Drug Dev Ind Pharm. Dec 2011;37(12):1387–1393.
  • Vora LK, Courtenay AJ, Tekko IA, et al. Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules. Int J Biol Macromol. 2020;146:290–298.
  • Ling M-H, Chen M-C. Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats. Acta Biomater. 2013;9(11):8952–8961.
  • Liu S, Jin M-N, Quan Y-S, et al. Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin. Eur J Pharm Biopharm. 2014;86(2):267–276.
  • Zhang JN, Chen BZ, Ashfaq M, et al. Development of a BDDE-crosslinked hyaluronic acid based microneedles patch as a dermal filler for anti-ageing treatment. J Ind Eng Chem. 2018;65:363–369.
  • Aust MC, Fernandes D, Kolokythas P, et al. Percutaneous collagen induction therapy: an alternative treatment for scars, wrinkles, and skin laxity. Plast Reconstr Surg. 2008;121(4):1421–1429.
  • Aditya A, Kim B, Koyani RD, et al. Kinetics of collagen microneedle drug delivery system. J Drug Deliv Sci Technol. 2019;52:618–623.
  • Hines DJ, Kaplan DL. Mechanisms of controlled release from silk fibroin films. Biomacromolecules. 2011;12(3):804–812.
  • Kim H, Che L, Ha Y, et al. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Mater Sci Eng C. 2014;40:324–335.
  • Lee J, Park SH, Seo IH, et al. Rapid and repeatable fabrication of high a/R silk fibroin microneedles using thermally-drawn micromolds. Eur J Pharm Biopharm. 2015;94:11–19.
  • You X, Chang J-h, Ju B-K, et al. Rapidly dissolving fibroin microneedles for transdermal drug delivery. Mater Sci Eng C. 2011;31(8):1632–1636.
  • Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8–9):762–798.
  • Arshad MS, Fatima S, Nazari K, et al. Engineering and characterisation of BCG-loaded polymeric microneedles. J Drug Target. 2020;28(5):525–532.
  • Zhang Y, Jiang G, Yu W, et al. Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats. Mater Sci Eng C. 2018;85:18–26.
  • Necas J, Bartosikova L, Brauner P, et al. Hyaluronic acid (hyaluronan): a review. Vet Med. 2008;53(8):397–411.
  • Gaines A, Pierce L, Bernhardt P, et al. Fatal iatrogenic hypoglycemia: falsely elevated blood glucose readings with a point-of-care meter due to a Maltose-Containing intravenous immune globulin product. USA: US Food and Drug Administration; 2015.
  • Fonseca DF, Costa PC, Almeida IF, et al. Pullulan microneedle patches for the efficient transdermal administration of insulin envisioning diabetes treatment. Carbohydr Polym. 2020;241:116314.
  • Pu'ad NM, Koshy P, Abdullah H, et al. Syntheses of hydroxyapatite from natural sources. Heliyon. 2019;5(5):e01588.
  • Yu W, Jiang G, Liu D, et al. Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite. Mater Sci Eng C. 2017;73:425–428.
  • Kamel S, Ali N, Jahangir K, et al. Pharmaceutical significance of cellulose: a review. Express Polym Lett. 2008;2(11):758–778.
  • Zaric M, Becker PD, Hervouet C, et al. Long-lived tissue resident HIV-1 specific memory CD8+ T cells are generated by skin immunization with live virus vectored microneedle arrays. J Control Release. 2017;268:166–175.
  • Lee JW, Choi SO, Felner EI, et al. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small. 2011;7(4):531–539.
  • Lahiji S, Seo S, Kim S, et al. Transcutaneous implantation of valproic acid-encapsulated dissolving microneedles induces hair regrowth. Biomaterials. 2018;167:69–79.
  • Kim J-Y, Han M-R, Kim Y-H, et al. Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer’s disease. Eur J Pharm Biopharm. 2016;105:148–155.
  • Prow TW, Chen X, Prow NA, et al. Nanopatch-targeted skin vaccination against West Nile virus and chikungunya virus in mice. Small. 2010;6(16):1776–1784.
  • Zan P, Than A, Duong PK, et al. Antimicrobial microneedle patch for treating deep cutaneous fungal infection. Adv Ther . 2019;2(10):1900064.
  • Arshad MS, Hassan S, Hussain A, et al. Improved transdermal delivery of cetirizine hydrochloride using polymeric microneedles. Daru. 2019;27(2):673–681.
  • Aoyagi S, Izumi H, Isono Y, et al. Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its application to a microneedle. Sens Actuators A. 2007;139(1–2):293–302.
  • Ng KW, Lau WM, Williams AC. Towards pain-free diagnosis of skin diseases through multiplexed microneedles: biomarker extraction and detection using a highly sensitive blotting method. Drug Deliv Transl Res. 2015;5(4):387–396.
  • Skaria E, Patel BA, Flint MS, et al. Poly(lactic acid)/carbon nanotube composite microneedle arrays for dermal biosensing. Anal Chem. 2019;91(7):4436–4443.
  • Popescu. Pharmaceutical applications of maleic anhydride/acid copolymers. In: Thakur VK, Thakur MK, editor. Handbook of polymers for pharmaceutical technologies. Hoboken, NJ: Wiley. Vol. 2; 2015. p. 281–309.
  • Migalska K, Morrow DI, Garland MJ, et al. Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery. Pharm Res. 2011;28(8):1919–1930. Aug
  • Garland MJ, Caffarel–Salvador E, Migalska K, et al. Dissolving polymeric microneedle arrays for electrically assisted transdermal drug delivery. J Controlled Release. 2012;159(1):52–59.
  • McCrudden MTC, Alkilani AZ, McCrudden CM, et al. Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs. J Control Release. 2014;180:71–80.
  • Pattani A, McKay PF, Garland MJ, et al. Microneedle mediated intradermal delivery of adjuvanted recombinant HIV-1 CN54gp140 effectively primes mucosal boost inoculations. J Control Release. 2012;162(3):529–537.
  • Gajra B, Pandya S, Vidyasagar G, et al. Poly vinyl alcohol hydrogel and its pharmaceutical and biomedical applications: a review. Int J Pharma Res. 2011;4:20–26.
  • Edens C, Collins ML, Goodson JL, et al. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine. 2015;33(37):4712–4718.
  • Chen X, Prow TW, Crichton ML, et al. Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. J Control Release. 2009;139(3):212–220.
  • Abdelghany S, Tekko IA. Nanosuspension-based dissolving microneedle arrays for intradermal delivery of curcumin. Pharmaceutics. 2019;11(7):308.
  • Teodorescu M, Bercea M. Poly(vinylpyrrolidone) – A versatile polymer for biomedical and beyond medical applications. Poly-Plas Tech and Eng. 2015;54(9):923–943.
  • Du G, Sun X, editors. Current advances in sustained release microneedles. New York: Georg Thieme Verlag KG Stuttgart; 2020.
  • Ke C-J, Lin Y-J, Hu Y-C, et al. Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres. Biomaterials. 2012;33(20):5156–5165.
  • Cole G, McCaffrey J, Ali AA, et al. Dissolving microneedles for DNA vaccination: improving functionality via polymer characterization and RALA complexation. Hum Vaccin Immunother. 2017;13(1):50–62.
  • Caffarel-Salvador E, Tuan-Mahmood T-M, McElnay JC, et al. Potential of hydrogel-forming and dissolving microneedles for use in paediatric populations. Int J Pharm. 2015;489(1–2):158–169.
  • Xue P, Yeo DCL, Chuah YJ, et al. Drug-eluting microneedles for self-administered treatment of keloids. Technology. 2014;2(2):144–152.
  • Li QY, Zhang JN, Chen BZ, et al. A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin. RSC Adv. 2017;7(25):15408–15415.
  • Cai Z, Wan Y, Becker ML, et al. Poly(propylene fumarate)-based materials: synthesis, functionalization, properties, device fabrication and biomedical applications. Biomaterials. 2019;208:45–71.
  • Lu Y, Mantha SN, Crowder DC, et al. Microstereolithography and characterization of poly(propylene fumarate)-based drug-loaded microneedle arrays. Biofabrication. 2015;7(4):045001.
  • Teasdale I, Brüggemann O. Polyphosphazenes: multifunctional, biodegradable vehicles for drug and gene delivery. Polymers. 2013;5(1):161–187.
  • Andrianov AK, DeCollibus DP, Gillis HA, et al. Poly[di(carboxylatophenoxy)phosphazene] is a potent adjuvant for intradermal immunization. Proc Natl Acad Sci USA. 2009;106(45):18936–18941.
  • Yeo DC, Balmayor ER, Schantz JT, et al. Microneedle physical contact as a therapeutic for abnormal scars. Eur J Med Res. 2017;22(1):28.
  • Monteiro-Riviere NA. Structure and function of skin. Toxicol Skin. 2010;1:15–32.
  • Ali R, Mehta P, Arshad M, et al. Transdermal microneedles—a materials perspective. AAPS Pharmscitech. 2020;21(1):12.
  • Chen Y, Chen BZ, Wang QL, et al. Fabrication of coated polymer microneedles for transdermal drug delivery. J Control Release. 2017;265:14–21.
  • Naves L, Dhand C, Almeida L, et al. Poly (lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview. Prog Biomater. 2017;6(1–2):1–11.
  • Song JE, Jun S-H, Park S-G, et al. A semi-dissolving microneedle patch incorporating TEMPO-oxidized bacterial cellulose nanofibers for enhanced transdermal delivery. Polymers. 2020;12(9):1873.
  • Garkal A, Kulkarni D, Musale S, et al. Electrospinning nanofiber technology: a multifaceted paradigm in biomedical applications. New J Chem. 2021;45:21508–21533.
  • Ko P-T, Lee I-C, Chen M-C, et al. Polymer microneedles fabricated from PCL and PCL/PEG blends for transdermal delivery of hydrophilic compounds. J Taiwan Inst Chem Eng. 2015;51:1–8.
  • Li Y, Zhang H, Yang R, et al. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsyst Nanoeng. 2019;5(1):1–11.
  • Choi S-O, Park J-H, Choi Y, et al., editors. An electrically active microneedle array for electroporation of skin for gene delivery. The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS'05; 2005. IEEE.
  • Sivaraman A, Banga AK. Novel in situ forming hydrogel microneedles for transdermal drug delivery. Drug Deliv Transl Res. 2017;7(1):16–26.
  • He M, Yang G, Zhao X, et al. Intradermal implantable PLGA microneedles for etonogestrel sustained release. J Pharm Sci. 2020;109(6):1958–1966.
  • Jamaledin R, Di Natale C, Onesto V, et al. Progress in microneedle-mediated protein delivery. J Clin Med. 2020;9(2):542.
  • Migdadi EM, Courtenay AJ, Tekko IA, et al. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J Control Release. 2018;285:142–151.
  • Demir YK, Akan Z, Kerimoglu O. Characterization of polymeric microneedle arrays for transdermal drug delivery. PLoS One. 2013;8(10):e77289.
  • Chang H, Zheng M, Yu X, et al. A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv Mater. 2017;29(37):1702243.
  • Quinn H, Donnelly R. Microneedle-mediated drug delivery. Microneedles for Drug and Vaccine Delivery and Patient Monitoring; 2018, p. 71–91.
  • Jiang J, Gill HS, Ghate D, et al. Coated microneedles for drug delivery to the eye. Invest Ophthalmol Visual Sci. 2007;48(9):4038–4043.
  • Yang J, Chen Z, Ye R, et al. Touch-actuated microneedle array patch for closed-loop transdermal drug delivery. Drug Deliv. 2018;25(1):1728–1739.
  • Basavarajaiah S, Kumar P, Umesh HM, et al. Feasibility of polyvinyl alcohol as a transdermal drug delivery system for terbutaline sulphate. J Macromol Sci Part A Pure Appl Chem A. 2007;44:583–589.
  • Mandegari M, Ghasemi-Mobarakeh L, Zamani M. Manipulating the degradation rate of PVA nanoparticles by a novel chemical-free method. Polym Adv Technol. 2019;30(9):2381–2391.
  • Nguyen HX, Bozorg BD, Kim Y, et al. Poly (vinyl alcohol) microneedles: fabrication, characterization, and application for transdermal drug delivery of doxorubicin. Eur J Pharm Biopharm. 2018;129:88–103.
  • Lim E-K, Jang E, Kim J, et al. Self-fabricated dextran-coated gold nanoparticles using pyrenyl dextran as a reducible stabilizer and their application as CT imaging agents for atherosclerosis. J Mater Chem. 2012;22(34):17518–17524.
  • Wu X-M, Todo H, Sugibayashi K. Enhancement of skin permeation of high molecular compounds by a combination of microneedle pretreatment and iontophoresis. J Control Release. 2007;118(2):189–195.
  • Katikaneni S, Badkar A, Nema S, et al. Molecular charge mediated transport of a 13 kD protein across microporated skin. Int J Pharm. 2009;378(1–2):93–100. 07/01
  • Katikaneni S, Li G, Badkar A, et al. Transdermal delivery of a approximately 13 kDa protein–an in vivo comparison of physical enhancement methods. J Drug Target. 2010;18(2):141–147. Feb
  • Kim Y-C, Quan F-S, Compans RW, et al. Formulation of microneedles coated with influenza virus-like particle vaccine. AAPS PharmSciTech. 2010;11(3):1193–1201.
  • Loizidou EZ, Williams NA, Barrow DA, et al. Structural characterisation and transdermal delivery studies on sugar microneedles: experimental and finite element modelling analyses. Eur J Pharm Biopharm. 2015;89:224–231.
  • Li H, Shi H, He Y, et al. Preparation and characterization of carboxymethyl cellulose-based composite films reinforced by cellulose nanocrystals derived from pea hull waste for food packaging applications. Int J Biol Macromol. 2020;164:4104–4112.
  • Yin Z, Kuang D, Wang S, et al. Swellable silk fibroin microneedles for transdermal drug delivery. Int J Biol Macromol. 2018;106:48–56.
  • Luo Z, Sun W, Fang J, et al. Biodegradable gelatin methacryloyl microneedles for transdermal drug delivery. Adv Healthc Mater. 2019;8(3):e1801054.
  • Chen M-C, Ling M-H, Kusuma SJ. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin. Acta Biomater. 2015;24:106–116.
  • Yang G, He M, Zhang S, et al. An acryl resin-based swellable microneedles for controlled release intradermal delivery of granisetron. Drug Dev Ind Pharm. 2018;44(5):808–816.
  • Yang S, Feng Y, Zhang L, et al. A scalable fabrication process of polymer microneedles. Int J Nanomedicine. 2012;7:1415–1422.
  • Yang S, Wu F, Liu J, et al. Phase-transition microneedle patches for efficient and accurate transdermal delivery of insulin. Adv Funct Mater. 2015;25(29):4633–4641.
  • Dathathri E, Lal S, Mittal M, et al. Fabrication of low-cost composite polymer-based micro needle patch for transdermal drug delivery. Appl Nanosci. 2020;10(2):371–377.
  • Sullivan SP, Murthy N, Prausnitz MR. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater. 2008;20(5):933–938.
  • Gao Y, Hou M, Yang R, et al. PEGDA/PVP microneedles with tailorable matrix constitutions for controllable transdermal drug delivery. Macromol Mater Eng. 2018;303(12):1800233.
  • Lau S, Fei J, Liu H, et al. Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery. J Control Release. 2017;265:113–119.
  • Marin A, Andrianov AK. Carboxymethylcellulose–chitosan-coated microneedles with modulated hydration properties. J Appl Polym Sci. 2011;121(1):395–401.
  • Vicente-Perez EM, Larrañeta E, McCrudden MTC, et al. Repeat application of microneedles does not alter skin appearance or barrier function and causes no measurable disturbance of serum biomarkers of infection, inflammation or immunity in mice in vivo. Eur J Pharm Biopharm. 2017;117:400–407.
  • Arshad MS, Zahra AT, Zafar S, et al. Antibiofilm effects of macrolide loaded microneedle patches: prospects in healing infected wounds. Pharm Res. 2021;38(1):165–177.
  • Sabri AH, Ogilvie J, Abdulhamid K, et al. Expanding the applications of microneedles in dermatology. Eur J Pharm Biopharm. 2019;140:121–140.
  • Hou A, Cohen B, Haimovic A, et al. Microneedling: a comprehensive review. Dermatol Surg. 2017;43(3):321–339.
  • Soltani-Arabshahi R, Wong JW, Duffy KL, et al. Facial allergic granulomatous reaction and systemic hypersensitivity associated with microneedle therapy for skin rejuvenation. JAMA Dermatol. 2014;150(1):68–72.
  • Bal S, Kruithof AC, Liebl H, et al. In vivo visualization of microneedle conduits in human skin using laser scanning microscopy. Laser Phys Lett. 2010;7(3):242–246.
  • Desai S, Bidanda B, Bártolo PJ. Emerging trends in the applications of metallic and ceramic biomaterials. In: Bio-materials and prototyping applications in medicine. Germany: Springer; 2021. p. 1–17.
  • Desai S, Shankar MR. Polymers, composites and nano biomaterials: current and future developments. In: Bio-materials and prototyping applications in medicine. Germany: Springer; 2008. p. 15–26.
  • Desai S, Shankar MR. Emerging trends in polymers, composites, and nano biomaterial applications. In: Bio-materials and prototyping applications in medicine. New York: Springer; 2021. p. 19–34.
  • Zhao X, Li X, Zhang P, et al. Tip-loaded fast-dissolving microneedle patches for photodynamic therapy of subcutaneous tumor. J Control Release. 2018;286:201–209.
  • Donnelly RF, Singh TRR, Larrañeta E, et al. Microneedles for drug and vaccine delivery and patient monitoring. New York: John Wiley & Sons; 2018.
  • Badilescu S, Packirisamy M. BioMEMS: science and engineering perspectives. Boca Raton: CRC Press; 2016.
  • O’Mahony C. Structural characterization and in-vivo reliability evaluation of silicon microneedles. Biomed Microdev. 2014;16(3):333–343.
  • Verbaan F, Bal S, Van den Berg D, et al. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J Control Release. 2007;117(2):238–245.
  • Aldawood FK, Andar A, Desai S. A comprehensive review of microneedles: types, materials, processes, characterizations and applications. Polymers. 2021;13(16):2815.
  • Rosario P. Biomaterials applications for nanomedicine. Croatia: IntechOpen; 2011.
  • Jeggy C. Micro-injection moulding: from process to modelling. Louvain-la-Neuve (Belgium): Presses Universitaires de Louvain; 2004.
  • Guillot A, Cordeiro A, Donnelly R, et al. Microneedle-based delivery: an overview of current applications and trends. Pharmaceutics. 2020;12:569.
  • Donnelly RF, Morrow DI, McCrudden MT, et al. Hydrogel‐forming and dissolving microneedles for enhanced delivery of photosensitizers and precursors. Photochem Photobiol. 2014;90(3):641–647.
  • McCrudden MT, Alkilani AZ, Courtenay AJ, et al. Considerations in the sterile manufacture of polymeric microneedle arrays. Drug Deliv Transl Res. 2015;5(1):3–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.