268
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Exploring the influence factors and improvement strategies of drug polymorphic transformation combined kinetic and thermodynamic perspectives during the formation of nanosuspensions

, , , , , & show all
Pages 1867-1880 | Received 12 Jan 2022, Accepted 30 Mar 2022, Published online: 14 Apr 2022

References

  • Malamatari M, Taylor KMG, Malamataris S, et al. Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discov Today. 2018;23(3):534–547.
  • Modh N, Mehta D, Parejiya P, et al. An overview of recent patents on nanosuspension. Recent Pat Drug Deliv Formul. 2014;8(2):144–154.
  • Sarabu S, Kallakunta VR, Bandari S, et al. Hypromellose acetate succinate based amorphous solid dispersions via hot melt extrusion: effect of drug physicochemical properties. Carbohydr Polym. 2020;233:115828.
  • Zhang Z, Dong L, Guo J, et al. Prediction of the physical stability of amorphous solid dispersions: relationship of aging and phase separation with the thermodynamic and kinetic models along with characterization techniques. Expert Opin Drug Deliv. 2021;18(2):249–264.
  • Li T, Hawley A, Rades T, et al. Exposure of liposomes containing nanocrystallised ciprofloxacin to digestive media induces solid-state transformation and altered in vitro drug release. J Control Release. 2020;323:350–360.
  • Zuo W, Qu W, Li N, et al. Fabrication of multicomponent amorphous bufadienolides nanosuspension with wet milling improves dissolution and stability. Artif Cells Nanomed Biotechnol. 2018;46(7):1513–1522.
  • Singhal M, Baumgartner A, Turunen E, et al. Nanosuspensions of a poorly soluble investigational molecule ODM-106: impact of milling bead diameter and stabilizer concentration. Int J Pharm. 2020;587:119636.
  • Li NN, Lin J, Gao D, et al. A macromolecular prodrug strategy for combinatorial drug delivery. J Colloid Interface Sci. 2014;417:301–309.
  • Bujňáková Z, Dutková E, Baláž M, et al. Stability studies of As4S4 nanosuspension prepared by wet milling in poloxamer 407. Int J Pharm. 2015;478(1):187–192.
  • Zhang X, Li Z, Gao J, et al. Preparation of nanocrystals for insoluble drugs by top-down nanotechnology with improved solubility and bioavailability. Molecules. 2020;25(5):1080.
  • Ghosh I, Bose S, Vippagunta R, et al. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int J Pharm. 2011;409(1–2):260–268.
  • Melo KJC, Henostroza MAB, Löbenberg R, et al. Rifampicin nanocrystals: towards an innovative approach to treat tuberculosis. Mater Sci Eng C Mater Biol Appl. 2020;112:110895.
  • Müller RH, Gohla S, Keck CM. State of the art of nanocrystals—special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011;78(1):1–9.
  • Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J Pharm Sci. 2015;10(1):13–23.
  • Manca ML, Lai F, Pireddu R, et al. Impact of nanosizing on dermal delivery and antioxidant activity of quercetin nanocrystals. J Drug Deliv Sci Technol. 2020;55:101482.
  • Medarević D, Ibrić S, Vardaka E, et al. Insight into the formation of glimepiride nanocrystals by wet media milling. Pharmaceutics. 2020;12(1):53.
  • Peltonen L, Strachan CJ. Degrees of order: a comparison of nanocrystal and amorphous solids for poorly soluble drugs. Int J Pharm. 2020;586:119492.
  • Leone F, Cavalli R. Drug nanosuspensions: a ZIP tool between traditional and innovative pharmaceutical formulations. Expert Opin Drug Deliv. 2015;12(10):1607–1625.
  • Liu JL, Tu LX, Cheng M, et al. Mechanisms for oral absorption enhancement of drugs by nanocrystals. J Drug Deliv Sci Technol. 2020;56:101607.
  • Singare DS, Marella S, Gowthamrajan K, et al. Optimization of formulation and process variable of nanosuspension: an industrial perspective. Int J Pharm. 2010;402(1–2):213–220.
  • Dharani S, Barakh Ali SF, Afrooz H, et al. Studying effect of glyceryl palmitostearate amount, manufacturing method and stability on polymorphic transformation and dissolution of rifaximin tablets. Int J Pharm. 2020;589:119785.
  • Higashi K, Ueda K, Moribe K. Recent progress of structural study of polymorphic pharmaceutical drugs. Adv Drug Deliv Rev. 2017;117:71–85.
  • Lin SY. Molecular perspectives on solid-state phase transformation and chemical reactivity of drugs: metoclopramide as an example. Drug Discov Today. 2015;20(2):209–222.
  • Newman AW, Byrn SR. Solid-state analysis of the active pharmaceutical ingredient in drug products. Drug Discov Today. 2003;8(19):898–905.
  • Yu LX, Furness MS, Raw A, et al. Scientific considerations of pharmaceutical solid polymorphism in Abbreviated New Drug Applications. Pharm Res. 2003;20(4):531–536.
  • Datta S, Grant DJ. Crystal structures of drugs: advances in determination, prediction and engineering. Nat Rev Drug Discov. 2004;3(1):42–57.
  • Morissette SL, Soukasene S, Levinson D, et al. Elucidation of crystal form diversity of the HIV protease inhibitor ritonavir by high-throughput crystallization. Proc Natl Acad Sci U S A. 2003;100(5):2180–2184.
  • Sharma P, Denny WA, Garg S. Effect of wet milling process on the solid state of indomethacin and simvastatin. Int J Pharm. 2009;380(1–2):40–48.
  • Crowley KJ, Zografi G. Cryogenic grinding of indomethacin polymorphs and solvates: assessment of amorphous phase formation and amorphous phase physical stability. J Pharm Sci. 2002;91(2):492–507.
  • Dupont A, Guerain M, Danède F, et al. Kinetics and mechanism of polymorphic transformation of sorbitol under mechanical milling. Int J Pharm. 2020;590:119902.
  • Descamps M, Willart JF. Perspectives on the amorphisation/milling relationship in pharmaceutical materials. Adv Drug Deliv Rev. 2016;100:51–66.
  • Mazel V, Delplace C, Busignies V, et al. Polymorphic transformation of anhydrous caffeine under compression and grinding: a re-evaluation. Drug Dev Ind Pharm. 2011;37(7):832–840.
  • Hédoux A, Guinet Y, Paccou L, et al. Polymorphic transformation of anhydrous caffeine upon grinding and hydrostatic pressurizing analyzed by low-frequency Raman spectroscopy. J Pharm Sci. 2013;102(1):162–170.
  • Martinetto P, Bordet P, Descamps M, et al. Structural transformation of d-mannitol induced by in situ milling using real time powder synchrotron radiation diffraction. Cryst Growth Des. 2017;17(11):6111–6122.
  • Otsuka M, Kaneniwa N. Effect of seed crystals on solid-state transformation of polymorphs of chloramphenicol palmitate during grinding. J Pharm Sci. 1986;75(5):506–511.
  • Willart JF, Descamps M. Solid state amorphization of pharmaceuticals. Mol Pharm. 2008;5(6):905–920.
  • Martin G, Bellon P. Driven alloys. Solid State Phys. 1997;50:189–331.
  • Enrique RA, Bellon P. Nonequilibrium fluctuations, effective temperature, and effective interactions driven by irradiation of alloys. Phys Rev B Condens Matter Mater Phys. 2004;70(22):224106.
  • De Gusseme A, Neves C, Willart JF, et al. Ordering and disordering of molecular solids upon mechanical milling: the case of fananserine. J Pharm Sci. 2008;97(11):5000–5012.
  • Hörter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 2001;46(1–3):75–87.
  • Toziopoulou F, Malamatari M, Nikolakakis I, et al. Production of aprepitant nanocrystals by wet media milling and subsequent solidification. Int J Pharm. 2017;533(2):324–334.
  • Tuomela A, Hirvonen J, Peltonen L. Stabilizing agents for drug nanocrystals: effect on bioavailability. Pharmaceutics. 2016;8(2):16.
  • Anwar J, Boateng PK, Tamaki R, et al. Mode of action and design rules for additives that modulate crystal nucleation. Angew Chem Int Ed Engl. 2009;48(9):1596–1600.
  • Bodnár K, Hudson SP, Rasmuson ÅC. Stepwise use of additives for improved control over formation and stability of mefenamic acid nanocrystals produced by antisolvent precipitation. Cryst Growth Des. 2017;17(2):454–466.
  • Oktay AN, Ilbasmis-Tamer S, Karakucuk A, et al. Screening of stabilizing agents to optimize flurbiprofen nanosuspensions using experimental design. J Drug Deliv Sci Technol. 2020;57:101690.
  • Omolo CA, Kalhapure RS, Agrawal N, et al. Formulation and molecular dynamics simulations of a fusidic acid nanosuspension for simultaneously enhancing solubility and antibacterial activity. Mol Pharm. 2018;15(8):3512–3526.
  • Kumari R, Kumar R, Lynn A. Open g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54(7):1951–1962.
  • Parker N, Rahman M, Bilgili E. Impact of media material and process parameters on breakage kinetics-energy consumption during wet media milling of drugs. Eur J Pharm Biopharm. 2020;153:52–67.
  • Fontana F, Figueiredo P, Zhang P, et al. Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv Drug Deliv Rev. 2018;131:3–21.
  • Li M, Alvarez P, Bilgili E. A microhydrodynamic rationale for selection of bead size in preparation of drug nanosuspensions via wet stirred media milling. Int J Pharm. 2017;524(1–2):178–192.
  • Bilgili E, Guner G. Mechanistic modeling of wet stirred media milling for production of drug nanosuspensions. AAPS PharmSciTech. 2021;22(1):2.
  • Eskin D, Zhupanska O, Hamey R, et al. Microhydrodynamic analysis of nanogrinding in stirred media mills. AIChE J. 2005a;51(5):1346–1358.
  • Eskin D, Zhupanska O, Hamey R, et al. Microhydrodynamics of stirred media milling. Powder Technol. 2005b;156(2–3):95–102.
  • Guner G, Kannan M, Berrios M, et al. Use of bead mixtures as a novel process optimization approach to nanomilling of drug suspensions. Pharm Res. 2021;38(7):1279–1296.
  • Afolabi A, Akinlabi O, Bilgili E. Impact of process parameters on the breakage kinetics of poorly water-soluble drugs during wet stirred media milling: a microhydrodynamic view. Eur J Pharm Sci. 2014;51:75–86.
  • Gujar K, Wairkar S. Nanocrystal technology for improving therapeutic efficacy of flavonoids. Phytomedicine. 2020;71:153240.
  • Brammann C, Mueller-Goymann CC. Incorporation of benzoyl peroxide nanocrystals into adapalene-loaded solid lipid microparticles: part I – nanocrystalline benzoyl peroxide. Int J Pharm. 2019;564:171–179.
  • Trasi NS, Boerrigter SX, Byrn SR. Investigation of the milling-induced thermal behavior of crystalline and amorphous griseofulvin. Pharm Res. 2010;27(7):1377–1389.
  • Guner G, Yilmaz D, Bilgili E. Kinetic and microhydrodynamic modeling of fenofibrate nanosuspension production in a wet stirred media mill. Pharmaceutics. 2021;13(7):1055.
  • Hasegawa Y, Higashi K, Yamamoto K, et al. Direct evaluation of molecular states of piroxicam/poloxamer nanosuspension by suspended-state NMR and Raman spectroscopies. Mol Pharm. 2015;12(5):1564–1572.
  • Chen W, Galop K, Oh, inventor; C.K., assignee. Carvedilol polymorph. United States patent US 0152756 A1. 2004 Aug 5.
  • Medarević D, Djuriš J, Ibrić S, et al. Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling. Int J Pharm. 2018;540(1–2):150–161.
  • Karadag A, Ozcelik B, Huang Q. Quercetin nanosuspensions produced by high-pressure homogenization. J Agric Food Chem. 2014;62(8):1852–1859.
  • Kaialy W, Al Shafiee M. Recent advances in the engineering of nanosized active pharmaceutical ingredients: promises and challenges. Adv Colloid Interface Sci. 2016;228:71–91.
  • Marschall C, Graf G, Witt M, et al. Preparation of high concentration protein powder suspensions by milling of lyophilizates. Eur J Pharm Biopharm. 2021;166:75–86.
  • Monteiro A, Afolabi A, Bilgili E. Continuous production of drug nanoparticle suspensions via wet stirred media milling: a fresh look at the Rehbinder effect. Drug Dev Ind Pharm. 2013;39(2):266–283.
  • Fan F, Xiang P, Zhao L. Vibrational spectra analysis of amorphous lactose in structural transformation: water/temperature plasticization, crystal formation, and molecular mobility. Food Chem. 2021;341(Pt 1):128215.
  • Bilgili E, Afolabi A. A combined microhydrodynamics-polymer adsorption analysis for elucidation of the roles of stabilizers in wet stirred media milling. Int J Pharm. 2012;439(1–2):193–206.
  • Lai F, Sinico C, Ennas G, et al. Diclofenac nanosuspensions: influence of preparation procedure and crystal form on drug dissolution behaviour. Int J Pharm. 2009;373(1–2):124–132.
  • Sharma P, Zujovic ZD, Bowmaker GA, et al. Evaluation of a crystalline nanosuspension: polymorphism, process induced transformation and in vivo studies. Int J Pharm. 2011;408(1–2):138–151.
  • Xie J, Luo Y, Liu Y, et al. Novel redispersible nanosuspensions stabilized by co-processed nanocrystalline cellulose-sodium carboxymethyl starch for enhancing dissolution and oral bioavailability of baicalin. Int J Nanomedicine. 2019;14:353–369.
  • Yonashiro H, Higashi K, Morikawa C, et al. Morphological and physicochemical evaluation of two distinct glibenclamide/hypromellose amorphous nanoparticles prepared by the antisolvent method. Mol Pharm. 2018;15(4):1587–1597.
  • Alshweiat A, Katona G, Csóka I, et al. Design and characterization of loratadine nanosuspension prepared by ultrasonic-assisted precipitation. Eur J Pharm Sci. 2018;122:94–104.
  • Dwyer LM, Michaelis VK, O'Mahony M, et al. Confined crystallization of fenofibrate in nanoporous silica. CrystEngComm. 2015;17(41):7922–7929.
  • Aditya NP, Hamilton IE, Noon J, et al. Microwave-assisted nanonization of poorly water-soluble curcumin. ACS Sustain Chem Eng. 2019;7(11):9771–9781.
  • Zhang Z, Shen Z, Wang J, et al. Nanonization of megestrol acetate by liquid precipitation. Ind Eng Chem Res. 2009;48(18):8493–8499.
  • Rangaraj N, Pailla SR, Chowta P, et al. Fabrication of ibrutinib nanosuspension by quality by design approach: intended for enhanced oral bioavailability and diminished fast fed variability. AAPS PharmSciTech. 2019;20(8):326.
  • Du J, Li X, Zhao H, et al. Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies. Int J Pharm. 2015;495(2):738–749.
  • Li S, Zhang J, Fang Y, et al. Enhancing betulinic acid dissolution rate and improving antitumor activity via nanosuspension constructed by anti-solvent technique. Drug Des Devel Ther. 2020;14:243–256.
  • Wang Y, Zheng Y, Zhang L, et al. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172(3):1126–1141.
  • Zuo JY, de Araujo GLB, Stephano MA, et al. Design space approach in the development of esculetin nanocrystals by a small-scale wet-bead milling process. J Drug Deliv Sci Technol. 2020;55:101486.
  • Sosnik A, Seremeta KP. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv Colloid Interface Sci. 2015;223:40–54.
  • Freag MS, Elnaggar YS, Abdallah OY. Development of novel polymer-stabilized diosmin nanosuspensions: in vitro appraisal and ex vivo permeation. Int J Pharm. 2013;454(1):462–471.
  • Miao X, Sun C, Jiang T, et al. Investigation of nanosized crystalline form to improve the oral bioavailability of poorly water soluble cilostazol. J Pharm Pharm Sci. 2011;14(2):196–214.
  • Chongprasert S, Griesser UJ, Bottorff AT, et al. Effects of freeze-dry processing conditions on the crystallization of pentamidine isethionate. J Pharm Sci. 1998;87(9):1155–1160.
  • Morris KR, Griesser UJ, Eckhardt CJ, et al. Theoretical approaches to physical transformations of active pharmaceutical ingredients during manufacturing processes. Adv Drug Deliv Rev. 2001;48(1):91–114.
  • Peltonen L. Practical guidelines for the characterization and quality control of pure drug nanoparticles and nano-cocrystals in the pharmaceutical industry. Adv Drug Deliv Rev. 2018;131:101–115.
  • Egami K, Higashi K, Yamamoto K, et al. Crystallization of probucol in nanoparticles revealed by AFM analysis in aqueous solution. Mol Pharm. 2015;12(8):2972–2980.
  • Cheng WT, Lin SY. Famotidine polymorphic transformation in the grinding process significantly depends on environmental humidity or water content. Int J Pharm. 2008;357(1–2):164–168.
  • Li T, Mudie S, Cipolla D, et al. Solid state characterization of ciprofloxacin liposome nanocrystals. Mol Pharm. 2019;16(1):184–194.
  • Wang M, Rutledge GC, Myerson AS, et al. Production and characterization of carbamazepine nanocrystals by electrospraying for continuous pharmaceutical manufacturing. J Pharm Sci. 2012;101(3):1178–1188.
  • Li X, Hirsh DJ, Cabral-Lilly D, et al. Doxorubicin physical state in solution and inside liposomes loaded via a pH gradient. Biochim Biophys Acta. 1998;1415(1):23–40.
  • Li T, Cipolla D, Rades T, et al. Drug nanocrystallisation within liposomes. J Control Release. 2018;288:96–110.
  • Kojima T, Karashima M, Yamamoto K, et al. Combination of NMR methods to reveal the interfacial structure of a pharmaceutical nanocrystal and nanococrystal in the suspended state. Mol Pharm. 2018;15(9):3901–3908.
  • Hu Y, Wikström H, Byrn SR, et al. Estimation of the transition temperature for an enantiotropic polymorphic system from the transformation kinetics monitored using Raman spectroscopy. J Pharm Biomed Anal. 2007;45(4):546–551.
  • Alula MT, Mengesha ZT, Mwenesongole E. Advances in surface-enhanced Raman spectroscopy for analysis of pharmaceuticals: a review. Vib Spectrosc. 2018;98:50–63.
  • Bunaciu AA, Aboul-Enein HY, Hoang VD. Vibrational spectroscopy used in polymorphic analysis. TrAC Trends Anal Chem. 2015;69:14–22.
  • Doub WH, Adams WP, Spencer JA, et al. Raman chemical imaging for ingredient-specific particle size characterization of aqueous suspension nasal spray formulations: a progress report. Pharm Res. 2007;24(5):934–945.
  • Schmiele M, Schindler T, Westermann M, et al. Mesoscopic structures of triglyceride nanosuspensions studied by small-angle X-ray and neutron scattering and computer simulations. J Phys Chem B. 2014;118(29):8808–8818.
  • Knopp MM, Löbmann K, Elder DP, et al. Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development. Eur J Pharm Sci. 2016;87:164–173.
  • Levenstein MA, Wayment L, Scott CD, et al. Dynamic crystallization pathways of polymorphic pharmaceuticals revealed in segmented flow with inline powder X-ray diffraction. Anal Chem. 2020;92(11):7754–7761.
  • Patel D, Zode SS, Bansal AK. Formulation aspects of intravenous nanosuspensions. Int J Pharm. 2020;586:119555.
  • Lai F, Pini E, Angioni G, et al. Nanocrystals as tool to improve piroxicam dissolution rate in novel orally disintegrating tablets. Eur J Pharm Biopharm. 2011;79(3):552–558.
  • Chieng N, Rehder S, Saville D, et al. Quantitative solid-state analysis of three solid forms of ranitidine hydrochloride in ternary mixtures using Raman spectroscopy and X-ray powder diffraction. J Pharm Biomed Anal. 2009;49(1):18–25.
  • Padrela L, Rodrigues MA, Duarte A, et al. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals – a comprehensive review. Adv Drug Deliv Rev. 2018;131:22–78.
  • Fang C, Tang W, Wu S, et al. Ultrasound-assisted intensified crystallization of l-glutamic acid: crystal nucleation and polymorph transformation. Ultrason Sonochem. 2020;68:105227.
  • Chistyakov D, Sergeev G. The polymorphism of drugs: new approaches to the synthesis of nanostructured polymorphs. Pharmaceutics. 2020;12(1):34.
  • Li Y, Yin Q, Huang Q, et al. Estimation and confirmation of the thermodynamic stability relationships of the enantiotropic polymorphs of glycolide. J Chem Thermodyn. 2018;118:26–33.
  • Nyman J, Day GM. Static and lattice vibrational energy differences between polymorphs. CrystEngComm. 2015;17(28):5154–5165.
  • Miller JM, Collman BM, Greene LR, et al. Identifying the stable polymorph early in the drug discovery-development process. Pharm Dev Technol. 2005;10(2):291–297.
  • Gu CH, Young V Jr., Grant DJ. Polymorph screening: influence of solvents on the rate of solvent-mediated polymorphic transformation. J Pharm Sci. 2001;90(11):1878–1890.
  • Hagedorn M, Bögershausen A, Rischer M, et al. Dual centrifugation – a new technique for nanomilling of poorly soluble drugs and formulation screening by an DoE-approach. Int J Pharm. 2017;530(1–2):79–88.
  • Gajera BY, Shah DA, Dave RH. Development of an amorphous nanosuspension by sonoprecipitation-formulation and process optimization using design of experiment methodology. Int J Pharm. 2019;559:348–359.
  • Shekhawat P, Pokharkar V. Risk assessment and QbD based optimization of an eprosartan mesylate nanosuspension: in-vitro characterization, PAMPA and in-vivo assessment. Int J Pharm. 2019;567:118415.
  • Prasad R, Dalvi SV. Sonocrystallization: monitoring and controlling crystallization using ultrasound. Chem Eng Sci. 2020;226:115911.
  • Alshweiat A, Csóka I, Tömösi F, et al. Nasal delivery of nanosuspension-based mucoadhesive formulation with improved bioavailability of loratadine: preparation, characterization, and in vivo evaluation. Int J Pharm. 2020;579:119166.
  • Parmentier J, Tan EH, Low A, et al. Downstream drug product processing of itraconazole nanosuspension: factors influencing drug particle size and dissolution from nanosuspension-layered beads. Int J Pharm. 2017;524(1–2):443–453.
  • Meruva S, Thool P, Shah S, et al. Formulation and performance of irbesartan nanocrystalline suspension and granulated or bead-layered dried powders – part I. Int J Pharm. 2019;568:118189.
  • Anwar J, Zahn D. Polymorphic phase transitions: macroscopic theory and molecular simulation. Adv Drug Deliv Rev. 2017;117:47–70.
  • Zahn D, Anwar J. Size-dependent phase stability of a molecular nanocrystal: a proxy for investigating the early stages of crystallization. Chemistry. 2011;17(40):11186–11192.
  • Rengarajan GT, Enke D, Steinhart M, et al. Size-dependent growth of polymorphs in nanopores and Ostwald's step rule of stages. Phys Chem Chem Phys. 2011;13(48):21367–21374.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.