360
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Biopharmaceutics considerations for direct oral anticoagulants

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1881-1894 | Received 18 Oct 2021, Accepted 30 Mar 2022, Published online: 11 Apr 2022

References

  • Konstantinides SV, Meyer G, Becattini C, et al. 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the european respiratory society (ERS): the task force for the diagnosis and management of acute pulmonary embolism of the european society of cardiology (ESC). Eur Heart J. 2020;41(4):543–603.
  • Haas S. New oral Xa and IIa inhibitors: updates on clinical trial results. J Thromb Thrombolysis. 2008;25(1):52–60.
  • Ageno W, Gallus AS, Wittkowsky A, et al. Oral anticoagulant therapy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e44S–e88S.
  • Verheugt FWA, Granger CB. Oral anticoagulants for stroke prevention in atrial fibrillation: current status, special situations, and unmet needs. Lancet. 2015;386(9990):303–310.
  • Raiola A, Tenore GC, Ritieni A, et al. In vitro bioaccessibility, bioavailability, and plasma protein interaction of new oral anticoagulants in the presence of macronutrients. Curr Pharm Biotechnol. 2018;19(12):982–989.
  • Kubitza D, Becka M, Voith B, et al. Safety, pharmacodynamics, and pharmacokinetics of single doses of Bay 59-7939, an oral, direct factor Xa inhibitor. Clin Pharmacol Ther. 2005;78(4):412–421.
  • Kubitza D, Becka M, Roth A, et al. Dose-escalation study of the pharmacokinetics and pharmacodynamics of rivaroxaban in healthy elderly subjects. Curr Med Res Opin. 2008;24(10):2757–2765.
  • Raghavan N, Frost CE, Yu Z, et al. Apixaban metabolism and pharmacokinetics after oral administration to humans. Drug Metab Dispos. 2009;37(1):74–81.
  • Ogata K, Mendell-Harary J, Tachibana M, et al. Clinical safety, tolerability, pharmacokinetics, and pharmacodynamics of the novel factor Xa inhibitor edoxaban in healthy volunteers. J Clin Pharmacol. 2010;50(7):743–753.
  • Härtter S, Sennewald R, Nehmiz G, et al. Oral bioavailability of dabigatran etexilate (pradaxa®) after co-medication with verapamil in healthy subjects. Br J Clin Pharmacol. 2013;75(4):1053–1062.
  • Frost C, Nepal S, Wang J, et al. Safety, pharmacokinetics and pharmacodynamics of multiple oral doses of apixaban, a factor Xa inhibitor, in healthy subjects. Br J Clin Pharmacol. 2013;76(5):776–786.
  • Matsushima N, Lee F, Sato T, et al. Bioavailability and safety of the factor Xa inhibitor edoxaban and the effects of quinidine in healthy subjects. Clin Pharmacol Drug Dev. 2013;2(4):358–366.
  • Miller CS, Grandi SM, Shimony A, et al. Meta-analysis of efficacy and safety of new oral anticoagulants (dabigatran, rivaroxaban, apixaban) versus warfarin in patients with atrial fibrillation. Am J Cardiol. 2012;110(3):453–460.
  • Salazar CA, del Aguila D, Cordova EG. Direct thrombin inhibitors versus vitamin K antagonists for preventing cerebral or systemic embolism in people with non-valvular atrial fibrillation. Cochrane Database Syst Rev. 2014;2014(3):CD009893.
  • Bai Y, Deng H, Shantsila A, et al. Rivaroxaban versus dabigatran or warfarin in real-world studies of stroke prevention in atrial fibrillation: systematic review and Meta-analysis. Stroke. 2017;48(4):970–976.
  • Pengo V, Denas G, Zoppellaro G, et al. Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome. Blood. 2018;132(13):1365–1371.
  • Yu YB, Liu J, Fu GH, et al. Comparison of dabigatran and warfarin used in patients with non-valvular atrial fibrillation meta-analysis of random control trial. Medicine. 2018;97(46):e12841.
  • Khodashahi M, Rezaieyazdi Z, Sahebari M. Comparison of the therapeutic effects of rivaroxaban versus warfarin in antiphospholipid syndrome: a systematic review. Arch Rheumatol. 2020;35(1):107–116.
  • Aprovação de medicamento genérico contendo rivaroxabana [Internet]. Brasília: Agência Nacional de Vigilância Sanitária (Anvisa); [cited 2021. Aug 17]. Available from: https://consultas.anvisa.gov.br/#/medicamentos/25351595763201604/?substancia=23863.
  • FDA approves first generics of Eliquis [Internet]. Rockville (MD): Food and Drug Administration; [cited 2021. Aug 17]. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-generics-eliquis.
  • European Medicines Agency (EMA). Committee for medicinal products for human use (CHMP). guideline on the investigations of bioequivalence. London: EMA; 2010.
  • Food and Drug Administration (FDA). M9 biopharmaceutics classification System-Based biowaivers, guidance for industry. Rockville: FDA; 2021.
  • Fifty-first report of the WHO Expert Committee on specifications for pharmaceutical preparations. Geneva: WHO; 2017.
  • Agência Nacional de Vigilância Sanitária (Anvisa). Resolução da diretoria colegiada RDC n° 37, de 3 de agosto de 2011. Dispõe sobre o guia Para isenção e substituição de estudos de biodisponibilidade relativa/bioequivalência e dá outras providências. Brasília: Anvisa; 2011.
  • Amidon GL, Lennernäs H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–420.
  • Agência Nacional de Vigilância Sanitária (Anvisa). Instrução normativa n° 10, de 29 de setembro de 2016. Lista de fármacos candidatos à bioisenção baseada no sistema de classificação biofarmacêutica (BCS) e dá outras providências. Brasília: Anvisa; 2016.
  • Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.
  • Lennernäs H. Animal data: the contributions of the ussing chamber and perfusion systems to predicting human oral drug delivery in vivo. Adv Drug Deliv Rev. 2007;59(11):1103–1120.
  • Sachan NK, Bhattacharya A, Pushkar S, et al. Biopharmaceutical classification system: a strategic tool for oral drug delivery technology. Asian J Pharm. 2009;3(2):76–81.
  • Kawabata Y, Wada K, Nakatani M, et al. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420(1):1–10.
  • Sieger P, Cui Y, Scheuerer S. pH-dependent solubility and permeability profiles: a useful tool for prediction of oral bioavailability. Eur J Pharm Sci. 2017;105:82–90.
  • Xue X, Cao M, Ren L, et al. Preparation and optimization of rivaroxaban by self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability and no food effect. AAPS PharmSciTech. 2018;19(4):1847–1859.
  • Yamazaki S, Costales C, Lazzaro S, et al. Physiologically-based pharmacokinetic modeling approach to predict rifampin-mediated intestinal P-glycoprotein induction. CPT Pharmacometrics Syst Pharmacol. 2019;8(9):634–642.
  • Zheng C, Li Y, Peng Z, et al. A composite nanocarrier to inhibit precipitation of the weakly basic drug in the gastrointestinal tract. Drug Deliv. 2020;27(1):712–722.
  • Yu LX, Amidon GL, Polli JE, et al. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm Res. 2002;19(7):921–925.
  • Stangier J, Rathgen K, Stähle H, et al. The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects. Br J Clin Pharmacol. 2007;64(3):292–303.
  • Food and Drug Administration (FDA). Highlights of prescribing Information – Pradaxa® (dabigatran etexilate mesylate) capsules for oral use. Rockville: FDA; 2010.
  • Mekaj YH, Mekaj AY, Duci SB, et al. New oral anticoagulants: their advantages and disadvantages compared with vitamin K antagonists in the prevention and treatment of patients with thromboembolic events. Ther Clin Risk Manag. 2015;11:967–977.
  • European Medicines Agency (EMA). CHMP assessment report for pradaxa. London: EMA, 2008.
  • Eisert WG, Hauel N, Stangier J, et al. Dabigatran: an oral novel potent reversible nonpeptide inhibitor of thrombin. Arterioscler Thromb Vasc Biol. 2010;30(10):1885–1889.
  • Remko M. Molecular structure, lipophilicity, solubility, absorption, and polar surface area of novel anticoagulant agents. J Mol Struct THEOCHEM. 2009;916(1-3):76–85.
  • Remko M, Broer R, Remková A. A comparative study of the molecular structure, lipophilicity, solubility, acidity, absorption and polar surface area of coumarinic anticoagulants and direct thrombin inhibitors. RSC Adv. 2014;4(16):8072–8084.
  • Remko M, Remková A, Broer R. Theoretical study of molecular structure and physicochemical properties of novel factor Xa inhibitors and dual factor XA and factor IIA inhibitors. Molecules. 2016;21(2):185.
  • Ishiguro N, Kishimoto W, Volz A, et al. Impact of endogenous esterase activity on in vitro P-glycoprotein profiling of dabigatran etexilate in caco-2 monolayers. Drug Metab Dispos. 2014;42(2):250–256.
  • Stangier J. Clinical pharmacokinetics and pharmacodynamics of the oral direct thrombin inhibitor dabigatran etexilate. Clin Pharmacokinet. 2008;47(5):285–295.
  • Blech S, Ebner T, Ludwig-Schwellinger E, et al. The metabolism and disposition of the oral direct thrombin inhibitor, dabigatran, in humans. Drug Metab Dispos. 2008;36(2):386–399.
  • Food and Drug Administration (FDA). Clinical pharmacology and biopharmaceutics review(s). Application number: 22-512. Center for Drug Evaluation and Research. Rockville: FDA; 2010.
  • Stangier J, Stähle H, Rathgen K, et al. Pharmacokinetics and pharmacodynamics of the direct oral thrombin inhibitor dabigatran in healthy elderly subjects. Clin Pharmacokinet. 2008;47:47–59.
  • Stangier J, Eriksson BI, Dahl OE, et al. Pharmacokinetic profile of the oral direct thrombin inhibitor dabigatran etexilate in healthy volunteers and patients undergoing total hip replacement. J Clin Pharmacol. 2005;45(5):555–565.
  • Stangier J, Clemens A. Pharmacology, pharmacokinetics, and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor. Clin Appl Thromb Hemost. 2009;15(1_suppl):9S–16S.
  • Mueck W, Stampfuss J, Kubitza D, et al. Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet. 2014;53(1):1–16.
  • Ingrasciotta Y, Crisafulli S, Pizzimenti V, et al. Pharmacokinetics of new oral anticoagulants: implications for use in routine care. Expert Opin Drug Metab Toxicol. 2018;14(10):1057–1069.
  • Weinz C, Buetehorn U, Daehler HP, et al. Pharmacokinetics of Bay 59-7939-an oral, direct Factor Xa inhibitor-in rats and dogs. Xenobiotica. 2005;35(9):891–910.
  • Weinz C, Schwarz T, Kubitza D, et al. Metabolism and excretion of rivaroxaban, an oral, direct factor xa inhibitor, in rats, dogs, and humans. Drug Metab Dispos. 2009;37(5):1056–1064.
  • Gnoth MJ, Buetehorn U, Muenster U, et al. In vitro and in vivo p-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther. 2011;338(1):372–380.
  • Wang L, Zhang D, Raghavan N, et al. In vitro assessment of metabolic Drug-Drug interaction potential of apixaban through cytochrome P450 phenotyping, inhibition, and induction studies. Drug Metab Dispos. 2010;38(3):448–458.
  • He K, Luettgen JM, Zhang D, et al. Preclinical pharmacokinetics and pharmacodynamics of apixaban, a potent and selective factor Xa inhibitor. Eur J Drug Metab Pharmacokinet. 2011;36(3):129–139.
  • Zhang D, He K, Herbst JJ, et al. Characterization of efflux transporters involved in distribution and disposition of apixaban. Drug Metab Dispos. 2013;41(4):827–835.
  • Vakkalagadda B, Frost C, Byon W, et al. Effect of rifampin on the pharmacokinetics of apixaban, an oral direct inhibitor of factor Xa. Am J Cardiovasc Drugs. 2016;16(2):119–127.
  • Bathala MS, Masumoto H, Oguma T, et al. Pharmacokinetics, biotransformation, and mass balance of edoxaban, a selective, direct factor Xa inhibitor, in humans. Drug Metab Dispos. 2012;40(12):2250–2255.
  • Mendell J, Chen S, He L, et al. The effect of rifampin on the pharmacokinetics of edoxaban in healthy adults. Clin Drug Investig. 2015;35(7):447–453.
  • Partida RA, Giugliano RP. Edoxaban: pharmacological principles, preclinical and early-phase clinical testing. Future Cardiol. 2011;7(4):459–470.
  • Chai F, Sun L, Ding Y, et al. A solid self-nanoemulsifying system of the BCS class IIb drug dabigatran etexilate to improve oral bioavailability. Nanomedicine. 2016;11(14):1801–1816.
  • Cho JH, Kim JC, Kim HS, et al. Novel dabigatran etexilate hemisuccinate-loaded polycap: physicochemical characterisation and in vivo evaluation in beagle dogs. Int J Pharm. 2017;525(1):60–70.
  • Ge L, He X, Zhang Y, et al. A dabigatran etexilate phospholipid complex nanoemulsion system for further oral bioavailability by reducing drug-leakage in the gastrointestinal tract. Nanomed Nanotechnol Biol Med. 2018;14(4):1455–1464.
  • Xu H. Profiling ester prodrug activation: an activity based protein profiling (abpp) approach [dissertation]. Ann Arbor (MI): University of Michigan; 2015.
  • Perzborn E, Strassburger J, Wilmen A, et al. In vitro and in vivo studies of the novel antithrombotic agent Bay 59-7939-an oral, direct Factor Xa inhibitor. J Thromb Haemost. 2005;3(3):514–521.
  • Food and Drug Administration (FDA). Highlights of prescribing Information - Xarelto® (rivaroxaban) tablets, for oral use. Rockville: FDA; 2011.
  • Food and Drug Administration (FDA). Clinical pharmacology and biopharmaceutics review(s). Application number: 022406Orig1s000. Center for Drug Evaluation And Research. Rockville: FDA; 2010.
  • European Medicines Agency (EMA). CHMP assessment report for xarelto. London: EMA; 2008.
  • Package insert of Xarelto 1 mg/mL granules for oral suspension [Internet]; [cited 2021 Oct 01]. Available from: https://www.medicines.org.uk/emc/product/12108/smpc#AUTHDATE.
  • Stampfuss J, Kubitza D, Becka M, et al. The effect of food on the absorption and pharmacokinetics of rivaroxabana. Int J Clin Pharmacol Ther. 2013;51(7):549–561.
  • Brew CT, Blake JF, Mistry A, et al. Use of QSPR modeling to characterize in vitro binding of drugs to a gut-restricted polymer. Pharm Res. 2018;35(4):89.
  • Metre S, Mukesh S, Samal SK, et al. Enhanced biopharmaceutical performance of rivaroxaban through polymeric amorphous solid dispersion. Mol Pharm. 2018;15(2):652–668.
  • Vertzoni M, Kersten E, Van der Mey D, et al. Evaluating the clinical importance of bacterial degradation of therapeutic agents in the lower intestine of adults using adult fecal material. Eur J Pharm Sci. 2018;125:142–150.
  • Willmann S, Zhang L, Frede M, et al. Integrated population pharmacokinetic analysis of rivaroxaban across multiple patient populations. CPT Pharmacometrics Syst Pharmacol. 2018;7(5):309–320.
  • Wingert NR, dos Santos NO, Campanharo SC, et al. In vitro dissolution method fitted to in vivo absorption profile of rivaroxaban immediate-release tablets applying in silico data. Drug Dev Ind Pharm. 2018;44(5):723–728.
  • Abouhussein DMN, Bahaa El Din Mahmoud D, Mohammad FE. Design of a liquid nano-sized drug delivery system with enhanced solubility of rivaroxaban for venous thromboembolism management in paediatric patients and emergency cases. J Liposome Res. 2019;29(4):399–412.
  • Chen N, Di P, Ning S, et al. Modified rivaroxaban microparticles for solid state properties improvement based on drug-protein/polymer supramolecular interactions. Powder Technol. 2019;344:819–829.
  • Kapourani A, Vardaka E, Katopodis K, et al. Rivaroxaban polymeric amorphous solid dispersions: moisture-induced thermodynamic phase behavior and intermolecular interactions. Eur J Pharm Biopharm. 2019;145:98–112.
  • Demir H, Gulsun T, Ozkan MH, et al. Assessment of dose proportionality of rivaroxaban nanocrystals. AAPS PharmSciTech. 2020;21(6):1–11.
  • Sherje AP, Jadhav M. β-Cyclodextrin-based inclusion complexes and nanocomposites of rivaroxaban for solubility enhancement. J Mater Sci Mater Med. 2018;29:186.
  • Takács-Novák K, Szoke V, Völgyi G, et al. Biorelevant solubility of poorly soluble drugs: rivaroxaban, furosemide, papaverine and niflumic acid. J Pharm Biomed Anal. 2013;83:279–285.
  • Food and Drug Administration (FDA). Highlights of prescribing Information - Eliquis® (apixaban) tablets, for oral use. Rockville: FDA; 2012.
  • Pinto DJP, Orwat MJ, Quan ML, et al. 1-[3-Aminobenzisoxazol-5'-yl]-3-trifluoromethyl-6-[2'-(3-(R)-hydroxy-N-pyrrolidinyl)methyl-[1,1']-biphen-4-yl]-1,4,5,6-tetrahydropyrazolo-[3,4-c]-pyridin-7-one (BMS-740808) a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation factor Xa . Bioorg Med Chem Lett. 2006;16(15):4141–4147.
  • European Medicines Agency (EMA). Assessment report for eliquis. London: EMA; 2010.
  • Byon W, Nepal S, Schuster AE, et al. Regional gastrointestinal absorption of apixaban in healthy subjects. J Clin Pharmacol. 2018;58(7):965–971.
  • Food and Drug Administration (FDA). Clinical pharmacology and biopharmaceutics review(s). Application number: 202155Orig1s000. Center for Drug Evaluation and Research. Rockville: FDA; 2012.
  • Padrini R. Clinical pharmacokinetics and pharmacodynamics of direct oral anticoagulants in patients with renal failure. Eur J Drug Metab Pharmacokinet. 2019;44(1):1–12.
  • Song Y, Wang X, Perlstein I, et al. Relative bioavailability of apixaban solution or crushed tablet formulations administered by mouth or nasogastric tube in healthy subjects. Clin Ther. 2015;37(8):1703–1712.
  • Song Y, Chang M, Suzuki A, et al. Evaluation of crushed tablet for oral administration and the effect of food on apixaban pharmacokinetics in healthy adults. Clin Ther. 2016;38(7):1674–1685.
  • Asati Amit V, Salunkhe Kishor S, Chavan Machindra J, et al. Solubility enhancement of BCS classified IV drug-apixaban by preparation and evaluation of mesoporous nanomatrix. Int J Pharm Sci Res. 2020;11:880–890.
  • Byon W, Garonzik S, Boyd RA, et al. Apixaban: a clinical pharmacokinetic and pharmacodynamic review. Clin Pharmacokinet. 2019;58(10):1265–1279.
  • Food and Drug Administration (FDA). Highlights of prescribing Information - Savaysa® (edoxaban) tablets for oral use. Rockville: FDA; 2015.
  • Furugohri T, Isobe K, Honda Y, et al. DU-176b, a potent and orally active factor Xa inhibitor: in vitro and in vivo pharmacological profiles. J Thromb Haemost. 2008;6(9):1542–1549.
  • Pharmaceuticals and Medical Devices Agency (PMDA). Review report: Lixiana® tablets 15 mg and 30 mg. Pharmaceuticals and medical devices agency. Tokyo: PMDA; 2011.
  • Food and Drug Administration (FDA). Clinical pharmacology and biopharmaceutics review(s). Application number: 206316Orig1Orig2s000. Center for Drug Evaluation and Research. Rockville: FDA; 2014.
  • Parasrampuria DA, Kanamaru T, Connor A, et al. Evaluation of regional gastrointestinal absorption of edoxaban using the enterion capsule. J Clin Pharmacol. 2015;55(11):1286–1292.
  • Avdeef A, Fuguet E, Llinàs A, et al. Equilibrium solubility measurement of ionizable drugs – consensus recommendations for improving data quality. Admet Dmpk. 2016;4(2):117–178.
  • Iga K, Ogawa Y. Effect of buffer species, pH and buffer strength on drug dissolution rate and solubility of poorly-soluble acidic drugs: experimental and theoretical analysis. J Takeda Res. 1196;55:173–187.
  • Levis KA, Lane ME, Corrigan OI. Effect of buffer media composition on the solubility and effective permeability coefficient of ibuprofen. Int J Pharm. 2003;253(1-2):49–59.
  • Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13(4):519–547.
  • Tsume Y, Mudie DM, Langguth P, et al. The biopharmaceutics classification system: subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur J Pharm Sci. 2014;57:152–163.
  • Tubic-Grozdanis M, Bolger MB, Langguth P. Application of gastrointestinal simulation for extensions for biowaivers of highly permeable compounds. AAPS J. 2008;10(1):213–226.
  • Murray L, Arias A, Li J, et al. Innovative in vitro methodologies for establishing therapeutic equivalence. Rev Panam Salud Publica. 2016;40(1):23–28.
  • Parasrampuria DA, Truitt KE. Pharmacokinetics and pharmacodynamics of edoxaban, a Non-Vitamin K Antagonist Oral Anticoagulant that Inhibits Clotting Factor Xa . Clin Pharmacokinet. 2016;55(6):641–655.
  • Solanki PV, Uppelli B, Dhokrat PA, et al. Investigation on polymorphs of apixaban, an anticoagulant drug: study of phase transformations and designing efficient process for their preparation. World J Pharm Res. 2015;3:663–677.
  • Zhai J, Chen Z, Liu X, et al. Solubility measurement, model evaluation and thermodynamic analysis of rivaroxaban polymorphs in organic solvents. J Chem Thermodyn. 2017;104:218–229.
  • European Medicines Agency (EMA). Assessment report: apixaban accord. London: EMA, 2020.
  • Yan Y, Li A, Si Z, et al. Solubility measurement, correlation and molecular simulation of dabigatran etexilate mesylate polymorphs in five Mono-solvents. J Mol Liq. 2020;314:113676.
  • Bodhuri P, Weeratunga G, inventors; Apotex Pharmachem Inc., assignee. POLYMORPHIC FORM OF 5 CHLORO N {[(5S) 2 OXO 3 [4 (3 OXOMORPHOLIN 4 YL)PHENYL]OXA-ZOLIDIN 5 YL]-METHYL}THIOPHENE 2 CARBOXAMIDE. United States patent US 20100168111 A1. 2010. July 01.
  • Grunenberg A, Lenz J, Braun GA, et al., inventors; Bayer Schering Pharma Aktiengesellschaft, assignee. POLYMORPHOUS FORM OF 5-CHLORO-N-({(5S)-2-OXO-3[4-(3-OXO-4-MORPHOLINYL)-PHENYL-1,3-OXAZOLIDINE-5-YL}-METHYL)-2-THOPHENE CARBOXAMIDE. United States patent US 8,188,270 B2. 2012. May 29.
  • European Directorate for the Quality of Medicines and HealthCare (EDQM). Monograph of Rivaroxaban tablets. European Pharmacopoeia 10.6, 2021.
  • Rowe RC, Sheskey P, Quinn M. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical Press; 2009.
  • Page A, Etherton-Beer C. Choosing a medication brand: excipients, food intolerance and prescribing in older people. Maturitas. 2018;107:103–109.
  • Butler JM, Dressman JB. The developability classification system: application of biopharmaceutics concepts to formulation development. J Pharm Sci. 2010;101:2271–2280.
  • Kasim NA, Whitehouse M, Ramachandran C, et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharmaceutics. 2004;1(1):85–96.
  • Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx. 2005;2(4):541–553.
  • Giulia C, Giuseppe E. Molecular descriptors for polarity: the need of going beyond polar surface area. Future Med Chem. 2016;8:2013–2016.
  • Wang J, Skolnik S. Permeability diagnosis model in drug discovery: a diagnostic tool to identify the most influencing properties for gastrointestinal permeability. Curr Top Med Chem. 2013;13(11):1308–1316.
  • Palm K, Stenberg P, Luthman K, et al. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm Res. 1997;14(5):568–571.
  • Hughes JD, Blagg J, Price DA, et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett. 2008;18(17):4872–4875.
  • Sun H, Chow ECY, Liu S, et al. The caco-2 cell monolayer: usefulness and limitations. Expert Opin Drug Metab Toxicol. 2008;4(4):395–412.
  • Hodin S, Basset T, Jacqueroux E, et al. In vitro comparison of the role of p-glycoprotein and breast cancer resistance protein on direct oral anticoagulants disposition. Eur J Drug Metab Pharmacokinet. 2018;43(2):183–191.
  • Gong IY, Mansell SE, Kim RB. Absence of both MDR1 (ABCB1) and breast cancer resistance protein (ABCG2) transporters significantly alters rivaroxaban disposition and Central nervous system entry. Basic Clin Pharmacol Toxicol. 2013;112(3):164–170.
  • Jarc T, Novak M, Hevir N, et al. Demonstrating suitability of the caco-2 cell model for BCS-based biowaiver according to the recent FDA and ICH harmonised guidelines. J Pharm Pharmacol. 2019;71(8):1231–1242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.