168
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Applicability of image analysis to support QbD driven development of pellets

, , , , , & ORCID Icon show all
Pages 1794-1808 | Received 20 Apr 2021, Accepted 02 Apr 2022, Published online: 12 May 2022

References

  • Marković S, Poljanec K, Kerč J, et al. In-line NIR monitoring of key characteristics of enteric coated pellets. Eur J Pharm Biopharm. 2014;88(3):847–855.
  • Vesey C, Cronlein J, Breuer A, et al. Fluid bed nozzle spray characterization of an aqueous ethylcellulose dispersion for particle taste-masking applications. AAPS Poster Reprint; 2014. p. 3–6.
  • Loka NC, Saripella KK, Pinto CA, et al. Use of extrusion aids for successful production of Kollidon® CL-SF pellets by extrusion–spheronization. Drug Dev Ind Pharm. 2018;44(4):632–642.
  • Liu X, Zhou P, Yang Y, et al. Development of arsenic trioxide sustained-release pellets for reducing toxicity and improving compliance. Drug Dev Ind Pharm. 2020;46(11):1809–1818.
  • Wening K, Breitkreutz J. Oral drug delivery in personalized medicine: unmet needs and novel approaches. Int J Pharm. 2011;404(1–2):1–9.
  • Ratul D, Abdul Baquee A. Pellets and pelletization techniques: a critical review. Int Res J Pharm. 2013;4:90–95.
  • Vikash K, Santosh Kumar M, Amit L, et al. Multiple unit dosage form–pellet and pelletization techniques: an overview. Int J Res Ayurveda Pharm. 2011;2:121–125.
  • Muley S, Nandgude T, Poddar S. Extrusion–spheronization a promising pelletization technique: in-depth review. Asian J Pharm Sci. 2016;11(6):684–699.
  • Politis SN, Colombo P, Colombo G, et al. Design of experiments (DoE) in pharmaceutical development. Drug Dev Ind Pharm. 2017;43(6):889–901.
  • Grangeia HB, Silva C, Simões SP, et al. Quality by design in pharmaceutical manufacturing: a systematic review of current status, challenges and future perspectives. Eur J Pharm Biopharm. 2020;147:19–37.
  • Kovács B, Péterfi O, Kovács-Deák B, et al. Quality-by-design in pharmaceutical development: from current perspectives to practical applications. Acta Pharm. 2021;71(4):497–526.
  • Simon LL, Pataki H, Marosi G, et al. Assessment of recent process analytical technology (PAT) trends: a multiauthor review. Org Process Res Dev. 2015;19(1):3–62.
  • Heinicke G, Schwartz JB. Assessment of dynamic image analysis as a surrogate dissolution test for a coated multiparticulate product. Pharm Dev Technol. 2006;11(4):403–408.
  • Wirges M, Funke A, Serno P, et al. Development and in-line validation of a process analytical technology to facilitate the scale up of coating processes. J Pharm Biomed Anal. 2013;78–79:57–64.
  • Chopra R, Alderborn G, Newton JM, et al. The influence of film coating on pellet properties. Pharm Dev Technol. 2002;7(1):59–68.
  • Porter SC, Felton LA. Techniques to assess film coatings and evaluate film-coated products. Drug Dev Ind Pharm. 2010;36(2):128–142.
  • Yu W, Hancock BC. Evaluation of dynamic image analysis for characterizing pharmaceutical excipient particles. Int J Pharm. 2008;361(1–2):150–157.
  • Rabinski G, Thomas D. Dynamic digital image analysis: emerging technology for particle characterization. Water Sci Technol. 2004;50(12):19–26.
  • Xu R, Di Guida OA. Comparison of sizing small particles using different technologies. Powder Technol. 2003;132(2–3):145–153.
  • Almeida-Prieto S, Blanco-Méndez J, Otero-Espinar FJ. Image analysis of the shape of granulated powder grains. J Pharm Sci. 2004;93(3):621–634.
  • Nalluri VR, Schirg P, Gao X, et al. Different modes of dynamic image analysis in monitoring of pharmaceutical dry milling process. Int J Pharm. 2010;391(1–2):107–114.
  • Silva A, Burggraeve A, Denon Q, et al. Particle sizing measurements in pharmaceutical applications: comparison of in-process methods versus off-line methods. Eur J Pharm Biopharm. 2013;85(3 Pt B):1006–1018.
  • Fonteyne M, Wickström H, Peeters E, et al. Influence of raw material properties upon critical quality attributes of continuously produced granules and tablets. Eur J Pharm Biopharm. 2014;87(2):252–263.
  • Watano S, Numa T, Miyanami K, et al. A fuzzy control system of high shear granulation using image processing. Powder Technol. 2001;115(2):124–130.
  • Watano S, Numa T, Koizumi I, et al. Feedback control in high shear granulation of pharmaceutical powders. Eur J Pharm Biopharm. 2001;52(3):337–345.
  • Watano S. Direct control of wet granulation processes by image processing system. Powder Technol. 2001;117(1–2):163–172.
  • Lau C, Yu Q, Lister VY, et al. The evolution of pellet size and shape during spheronisation of an extruded microcrystalline cellulose paste. Chem Eng Res Des. 2014;92(11):2413–2424.
  • Krueger C, Thommes M, Kleinebudde P. Spheronisation mechanism of MCC II-based pellets. Powder Technol. 2013;238:176–187.
  • Treffer D, Wahl PR, Hörmann TR, et al. In-line implementation of an image-based particle size measurement tool to monitor hot-melt extruded pellets. Int J Pharm. 2014;466(1–2):181–189.
  • Langner M, Kitzmann I, Ruppert A-L, et al. In-line particle size measurement and process influences on rotary fluidized bed agglomeration. Powder Technol. 2020;364:673–679.
  • Možina M, Tomaževič D, Leben S, et al. Digital imaging as a process analytical technology tool for fluid-bed pellet coating process. Eur J Pharm Sci. 2010;41(1):156–162.
  • Oman Kadunc N, Šibanc R, Dreu R, et al. In-line monitoring of pellet coating thickness growth by means of visual imaging. Int J Pharm. 2014;470(1–2):8–14.
  • Korasa K, Vrečer F. A study on the applicability of multiple process analysers in the production of coated pellets. Int J Pharm. 2019;560:261–272.
  • Heinicke G, Matthews F, Schwartz JB. The effects of substrate size, surface area, and density on coat thickness of multi-particulate dosage forms. Pharm Dev Technol. 2005;10(1):85–96.
  • Heinicke G, Schwartz JB. Particle size distributions of inert spheres and pelletized pharmaceutical products by image analysis. Pharm Dev Technol. 2004;9(4):359–367.
  • Czajkowska M, Sznitowska M, Kleinebudde P. Determination of coating thickness of minitablets and pellets by dynamic image analysis. Int J Pharm. 2015;495(1):347–353.
  • Mehle A, Kitak D, Podrekar G, et al. In-line agglomeration degree estimation in fluidized bed pellet coating processes using visual imaging. Int J Pharm. 2018;546(1–2):78–85.
  • Koester M, Thommes M. New insights into the pelletization mechanism by extrusion/spheronization. AAPS PharmSciTech. 2010;11(4):1549–1551.
  • Tiwari R, Agarwal SK, Tiwari S. Formulation and multivariate optimization of microcrystalline cellulose pellets of highly water soluble drug. Int J Drug Deliv. 2013;5:206–213.
  • Labella G. Optimization of extrusion spheronization process for multiparticulates via design of experiments. AAPS. Colorcon. 2016. p. 1–4.
  • Saripella KK, Loka NC, Mallipeddi R, et al. A quality by experimental design approach to assess the effect of formulation and process variables on the extrusion and spheronization of drug-loaded pellets containing Polyplasdone® XL-10. AAPS PharmSciTech. 2016;17(2):368–379.
  • Gurram RK, Gandra S, Shastri NR. Design and optimization of disintegrating pellets of MCC by non-aqueous extrusion process using statistical tools. Eur J Pharm Sci. 2016;84:146–156.
  • Patil V, Belsare D. Optimization of extrusion and spheronization parameters for tolterodine tartrate pellets by design of experiment (DoE). Int J Sci Res. 2017;6:1817–1830.
  • Pandey S, Swamy S, Gupta A, et al. Multiple response optimisation of processing and formulation parameters of pH sensitive sustained release pellets of capecitabine for targeting Colon. J Microencapsul. 2018;35(3):259–271.
  • Wang J, Kan S, Chen T, et al. Application of quality by design (QbD) to formulation and processing of naproxen pellets by extrusion–spheronization. Pharm Dev Technol. 2015;20(2):246–256.
  • Theismann EM, Keppler JK, Owen M, et al. Modelling the effect of process parameters on the wet extrusion and spheronisation of high-loaded nicotinamide pellets using a quality by design approach. Pharmaceutics. 2019;11(4):154.
  • Vervaet C, Baert L, Risha PA, et al. The influence of the extrusion screen on pellet quality using an instrumented basket extruder. Int J Pharm. 1994;107(1):29–39.
  • Harrison PJ, Newton JM, Rowe RC. The characterization of wet powder masses suitable for extrusion/spheronization. J Pharm Pharmacol. 1985;37(10):686–691.
  • Newton JM, Chapman SR, Rowe RC. The influence of process variables on the preparation and properties of spherical granules by the process of extrusion and spheronisation. Int J Pharm. 1995;120(1):101–109.
  • Shah N, Mehta T, Gohel M. Formulation and optimization of multiparticulate drug delivery system approach for high drug loading. AAPS PharmSciTech. 2017;18(6):2157–2167.
  • Podczeck F, Knight PE, Newton JM. The evaluation of modified microcrystalline cellulose for the preparation of pellets with high drug loading by extrusion/spheronization. Int J Pharm. 2008;350(1–2):145–154.
  • Manda A, Walker RB, Khamanga S. An artificial neural network approach to predict the effects of formulation and process variables on prednisone release from a multipartite system. Pharmaceutics. 2019;11(3):109–118.
  • Sousa JJ, Sousa A, Podczeck F, et al. Factors influencing the physical characteristics of pellets obtained by extrusion–spheronization. Int J Pharm. 2002;232(1–2):91–106.
  • Lustig-Gustafsson C, Kaur Johal H, Podczeck F, et al. The influence of water content and drug solubility on the formulation of pellets by extrusion and spheronisation. Eur J Pharm Sci. 1999;8(2):147–152.
  • Podczeck F, Alessi P, Newton JM. The preparation of pellets containing non-ionic surfactants by extrusion/spheronization. Int J Pharm. 2008;361(1–2):33–40.
  • Melegari C. Study of different technologies for film coating of drug layered pellets using ethylcellulose as functional polymer; 2016. Available from: https://core.ac.uk/download/pdf/76520468.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.