200
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Bone regeneration in rat using polycaprolactone/gelatin/epinephrine scaffold

, , , , , , , , & show all
Pages 1915-1923 | Received 06 Apr 2021, Accepted 21 Apr 2022, Published online: 16 May 2022

References

  • Annamalai RT, Hong X, Schott NG, et al. Injectable osteogenic microtissues containing mesenchymal stromal cells conformally fill and repair critical-size defects. Biomaterials. 2019;208:32–44.
  • Schemitsch EH. Size matters: defining critical in bone defect size! J Orthopaed Trauma. 2017;31(5):S20–S22.
  • McDermott AM, Herberg S, Mason DE, et al. Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Sci Transl Med. 2019;11(495):eaav7756.
  • Lee J-W, Han H-S, Han K-J, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci U S A. 2016;113(3):716–721.
  • Bhumiratana S, Bernhard JC, Alfi DM, et al. Tissue-engineered autologous grafts for facial bone reconstruction. Sci Transl Med. 2016;8(343):343ra83.
  • Bez M, Sheyn D, Tawackoli W, et al. In situ bone tissue engineering via ultrasound-mediated gene delivery to endogenous progenitor cells in mini-pigs. Sci Transl Med. 2017;9(390):eaal3128.
  • Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nat Rev Mater. 2020;5(8):584–520.
  • Norris CJ, Meadway GJ, O'Sullivan MJ, et al. Self‐healing fibre reinforced composites via a bioinspired vasculature. Adv Funct Mater. 2011;21(19):3624–3633.
  • Tallawi M, Dippold D, Rai R, et al. Novel PGS/PCL electrospun fiber mats with patterned topographical features for cardiac patch applications. Mater Sci Eng C Mater Biol Appl. 2016;69:569–576.
  • Song X, Ling F, Ma L, et al. Electrospun hydroxyapatite grafted poly(l-lactide)/poly(lactic-co-glycolic acid) nanofibers for guided bone regeneration membrane. Compos Sci Technol. 2013;79:8–14.
  • Aldana AA, Abraham GA. Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int J Pharm. 2017;523(2):441–453.
  • Zha Z, Teng W, Markle V, et al. Fabrication of gelatin nanofibrous scaffolds using ethanol/phosphate buffer saline as a benign solvent. Biopolymers. 2012;97(12):1026–1036.
  • Lee J, Tae G, Kim YH, et al. The effect of gelatin incorporation into electrospun poly(l-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials. 2008;29(12):1872–1879.
  • Akbarzadeh R, Yousefi AM. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2014;102(6):1304–1315.
  • Szustakiewicz K, Gazińska M, Kryszak B, et al. The influence of hydroxyapatite content on properties of poly(l-lactide)/hydroxyapatite porous scaffolds obtained using thermal induced phase separation technique. Eur Polym J. 2019;113:313–320.
  • Fereshteh Z, Fathi M, Bagri A, et al. Preparation and characterization of aligned porous PCL/zein scaffolds as drug delivery systems via improved unidirectional freeze-drying method. Mater Sci Eng C Mater Biol Appl. 2016;68:613–622.
  • Salerno A, Domingo C, Saurina J. PCL foamed scaffolds loaded with 5-fluorouracil anti-cancer drug prepared by an eco-friendly route. Mater Sci Eng C Mater Biol Appl. 2017;75:1191–1197.
  • Ren K, Wang Y, Sun T, et al. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater Sci Eng C Mater Biol Appl. 2017;78:324–332.
  • Wong DL. Epinephrine biosynthesis: hormonal and neural control during stress. Cell Mol Neurobiol. 2006;26(4–6):889–898.
  • Gordan R, Gwathmey JK, Xie L-H. Autonomic and endocrine control of cardiovascular function. World J Cardiol. 2015;7(4):204–214.
  • Singh K. Nutrient and stress management. J Nutr Food Sci. 2016;6(4):2.
  • Gough CJ, Nolan JP. The role of adrenaline in cardiopulmonary resuscitation. Crit Care. 2018;22(1):1–8.
  • Harper N, Dixon T, Dugue P, et al. Suspected anaphylactic reactions associated with anaesthesia. Anaesthesia. 2009;64(2):199–211.
  • Jacobs IG, Finn JC, Jelinek GA, et al. Effect of adrenaline on survival in out-of-hospital cardiac arrest: a randomised double-blind placebo-controlled trial. Resuscitation. 2011;82(9):1138–1143.
  • Carvalho B, Fuller A, Brummel C, et al. Local infiltration of epinephrine-containing lidocaine with bicarbonate reduces superficial bleeding and pain during labor epidural catheter insertion: a randomized trial. Int J Obstet Anesth. 2007;16(2):116–121.
  • Uemura T, Ohta Y, Nakao Y, et al. Epinephrine accelerates osteoblastic differentiation by enhancing bone morphogenetic protein signaling through a cAMP/protein kinase a signaling pathway. Bone. 2010;47(4):756–765.
  • Govindaraju S, Reddy AS, Kim J, et al. Sensitive detection of epinephrine in human serum via fluorescence enhancement of gold nanoclusters. Appl Surf Sci. 2019;498:143837.
  • Gautam S, Chou C-F, Dinda AK, et al. Fabrication and characterization of PCL/gelatin/chitosan ternary nanofibrous composite scaffold for tissue engineering applications. J Mater Sci. 2014;49(3):1076–1089.
  • Nguyen T-H, Lee B-T. Fabrication and characterization of cross-linked gelatin electro-spun nano-fibers. J Biomed Sci Eng. 2010;3(12):1117–1124.
  • Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127–141.
  • Ribeiro C, Panadero J, Sencadas V, et al. Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films. Biomed Mater. 2012;7(3):35004.
  • White B, Porterfield S. Endocrine and reproductive physiology: Mosby physiology monograph series (with student consult online access). Philadelphia (PA): Elsevier Health Sciences; 2012.
  • Xu Z, Wu Q, Yang M, et al. Efficient asymmetric biosynthesis of (R)-(−)-epinephrine in hydrophilic ionic liquid-containing systems. RSC Adv. 2016;6(104):102292–102295.
  • Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2018;3(3):278–314.
  • Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, et al. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: cytotoxicity effect of nanoparticles against HT-29 cancer cells. J Photochem Photobiol B. 2016;164:352–360.
  • Kaviyarasu K, Kotsedi L, Simo A, et al. Photocatalytic activity of ZrO2 doped lead dioxide nanocomposites: investigation of structural and optical microscopy of RhB organic dye. Appl Surf Sci. 2017;421:234–239.
  • Dang M, Saunders L, Niu X, et al. Biomimetic delivery of signals for bone tissue engineering. Bone Res. 2018;6(1):25.
  • Khoshnevisan K, Maleki H, Samadian H, et al. Antibacterial and antioxidant assessment of cellulose acetate/polycaprolactone nanofibrous mats impregnated with propolis. Int J Biol Macromol. 2019;140:1260–1268.
  • Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2009;38(12):3484–3504.
  • Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–1256.
  • Kim MS, Jun I, Shin YM, et al. The development of genipin-crosslinked poly(caprolactone) (PCL)/gelatin nanofibers for tissue engineering applications. Macromol Biosci. 2010;10(1):91–100.
  • Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, et al. Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: fabrication, characterization, and in vivo study. Mater Sci Eng C. 2017;76:701–714.
  • Hodde J. Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng. 2002;8(2):295–308.
  • Liu X, Smith LA, Hu J, et al. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials. 2009;30(12):2252–2258.
  • Bücherl W, Buckley EE, Deulofeu V. Venomous animals and their venoms: venomous vertebrates. New York-London: Elsevier; 2013.
  • Schmidt-Nielsen K. Animal physiology: adaptation and environment. Cambridge (UK): Cambridge University Press; 1997.
  • Gunasekaran S, Kumar RT, Ponnusamy S. Vibrational spectra and normal coordinate analysis of adrenaline and dopamine. Ind J Pure & applied Phy. 2007;45:884–892.
  • Lieberman M, Marks AD. Marks' basic medical biochemistry: a clinical approach. Philadelphia (PA): Lippincott Williams & Wilkins; 2009.
  • Rhoades RA, Bell DR. Medical physiology: principles for clinical medicine. Philadelphia (PA): Lippincott Williams & Wilkins; 2012.
  • Yadav T, Sahu R, Mukherjee V. Molecular modeling and spectroscopic investigation of a neurotransmitter: epinephrine. J Mol Struct. 2019;1176:94–109.
  • Kirshner N, Goodall M. The formation of adrenaline from noradrenaline. Biochim Biophys Acta. 1957;24(3):658–659.
  • Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305–317.
  • Elefteriou F, Ahn JD, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–520.
  • Bouxsein M, Devlin M, Glatt V, et al. Mice lacking β-adrenergic receptors have increased bone mass but are not protected from deleterious skeletal effects of ovariectomy. Endocrinology. 2009;150(1):144–152.
  • Lipski S. Effects of beta-adrenergic stimulation on bone-marrow function in normal and sublethally irradiated mice. I. The effect of isoproterenol on cAMP content in bone-marrow cells in vivo and in vitro. Int J Radiat Biol Relat Stud Phys Chem Med. 1976;29(4):359–366.
  • Moore RE, Smith IC, Bailey CS, et al. Characterization of beta-adrenergic receptors on rat and human osteoblast-like cells and demonstration that beta-receptor agonists can stimulate bone resorption in organ culture. Bone Miner. 1993;23(3):301–315.
  • Takahata Y, Takarada T, Iemata M, et al. Functional expression of beta2 adrenergic receptors responsible for protection against oxidative stress through promotion of glutathione synthesis after Nrf2 upregulation in undifferentiated mesenchymal C3H10T1/2 stem cells. J Cell Physiol. 2009;218(2):268–275.
  • O'Brien FJ, Harley BA, Yannas IV, et al. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials. 2004;25(6):1077–1086.
  • Sultana N, Hassan MI, Lim MM. Composite synthetic scaffolds for tissue engineering and regenerative medicine. Johor Bahru (Malaysia): Springer; 2015.
  • Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 2004;32(3):477–486.
  • Li JJ, Kaplan DL, Zreiqat H. Scaffold-based regeneration of skeletal tissues to meet clinical challenges. J Mater Chem B. 2014;2(42):7272–7306.
  • Hosseinkhani H, Hosseinkhani M, Tian F, et al. Bone regeneration on a collagen sponge self-assembled peptide-amphiphile nanofiber hybrid scaffold. Tissue Eng. 2007;13(1):11–20.
  • Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials. 2011;32(36):9622–9629.
  • Sabir MI, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci. 2009;44(21):5713–5724.
  • Yassin MAAY. Surface hydrophilicity: a key factor in developing bone tissue engineering constructs. University of Bergen; 2017.
  • Henkelman S, Rakhorst G, Blanton J, et al. Standardization of incubation conditions for hemolysis testing of biomaterials. Mater Sci Eng C. 2009;29(5):1650–1654.
  • Semyari H, Salehi M, Taleghani F, et al. Fabrication and characterization of collagen-hydroxyapatite-based composite scaffolds containing doxycycline via freeze-casting method for bone tissue engineering. J Biomater Appl. 2018;33(4):501–513.
  • Školoudík L, Chrobok V, Kočí Z, et al. The transplantation of hBM-MSCs increases bone neo-formation and preserves hearing function in the treatment of temporal bone defects – on the experience of two month follow up. Stem Cell Rev Rep. 2018;14(6):860–870.
  • Salehi M, Ai A, Ehterami A, et al. In vitro and in vivo investigation of poly(lactic acid)/hydroxyapatite nanoparticle scaffold containing nandrolone decanoate for the regeneration of critical-sized bone defects. Nanomed J. 2020;7(2):115–123.
  • Samadian H, Khastar H, Ehterami A, et al. Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: in vitro and in vivo study. Sci Rep. 2021;11(1):1–11.
  • Sattary M, Khorasani MT, Rafienia M, et al. Incorporation of nanohydroxyapatite and vitamin D3 into electrospun PCL/gelatin scaffolds: the influence on the physical and chemical properties and cell behavior for bone tissue engineering. Polym Adv Technol. 2018;29(1):451–462.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.