145
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Experimental confirmation of antimicrobial effects of GdYVO4:Eu3+ nanoparticles

ORCID Icon, , , ORCID Icon, , , , , & show all
Pages 1966-1974 | Received 29 Sep 2021, Accepted 30 Apr 2022, Published online: 15 May 2022

References

  • Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645–1658.
  • Butov D, Lange C, Heyckendorf J, et al. Multidrug-resistant tuberculosis in the Kharkiv region, Ukraine. Int J Tuberc Lung Dis. 2020;24(5):485–491.
  • Butov D, Myasoedov V, Gumeniuk M, et al. Treatment effectiveness and outcome in patients with a relapse and newly diagnosed multidrug-resistant pulmonary tuberculosis. Med Glas. 2020;17(2):356–362.
  • Cars O, Chandy SJ, Mpundu M, et al. Resetting the agenda for antibiotic resistance through a health systems perspective. Lancet Glob Health. 2021;9(7):e1022–e1027.
  • Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309–318.
  • Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015;40(4):277–283.
  • Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016;4(2):10–1128.
  • El Shazely B, Yu G, Johnston PR, et al. Resistance evolution against antimicrobial peptides in Staphylococcus aureus alters pharmacodynamics beyond the MIC. Front Microbiol. 2020;11:103.
  • Mohan Raj JR, Karunasagar I. Phages amid antimicrobial resistance. Crit Rev Microbiol. 2019;45(5–6):701–711.
  • Uchil RR, Kohli GS, Katekhaye VM, et al. Strategies to combat antimicrobial resistance. J Clin Diagn Res. 2014;8(7):ME01–ME4.
  • Guerrero Correa M, Martínez FB, Vidal CP, et al. Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action. Beilstein J Nanotechnol. 2020;11:1450–1469.
  • Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–1249.
  • Lee NY, Ko WC, Hsueh PR. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol. 2019;10:1153.
  • Shaikh S, Nazam N, Rizvi SMD, et al. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. IJMS. 2019. 20(10):2468.
  • Slavin YN, Asnis J, Häfeli UO, et al. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology. 2017;15(1):65.
  • Vimbela GV, Ngo SM, Fraze C, et al. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine. 2017;12:3941–3965.
  • Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev. 2008;60(15):1627–1637.
  • Abdesselem M, Schoeffel M, Maurin I, et al. Multifunctional rare-earth vanadate nanoparticles: luminescent labels, oxidant sensors, and MRI contrast agents. ACS Nano. 2014;8(11):11126–11137.
  • Gadzhimagomedova Z, Zolotukhin P, Kit O, et al. Nanocomposites for X-ray photodynamic therapy. IJMS. 2020;21(11):4004–4019.
  • Kamkaew A, Chen F, Zhan Y, et al. Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano. 2016;10(4):3918–3935.
  • Maksimchuk PO, Yefimova SL, Hubenko KO, et al. Dark reactive oxygen species generation in ReVO4:Eu3+ (re = Gd, Y) nanoparticles in aqueous solutions. J Phys Chem C. 2020;124(6):3843–3850.
  • Yefimova SL, Maksimchuk PO, Seminko V, et al. Janus-faced redox activity of LnVO4:Eu3+ (Ln = Gd, Y, La) nanoparticles. J Phys Chem C. 2019;123(24):15323–15329.
  • Goltsev AM, Malyukin Y, Babenko NM, et al. Antitumor activity of spherical nanoparticles GdYVO4:Eu3+ depends on pre-incubation time. Appl Nanosci. 2020;10(8):2749–2758.
  • Sivandzade F, Bhalerao A, Cucullo L. Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio Protoc. 2019;9(1):e3128.
  • Elefantova K, Lakatos B, Kubickova J, et al. Detection of the mitochondrial membrane potential by the cationic dye JC-1 in L1210 cells with massive overexpression of the plasma membrane ABCB1 drug transporter. IJMS. 2018; 19(7):1985.
  • Perry SW, Norman JP, Barbieri J, et al. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques. 2011;50(2):98–115.
  • Perelman A, Wachtel C, Cohen M, et al. JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis. 2012;3(11):e430.
  • Onishchenko A, Myasoedov V, Yefimova S, et al. UV light-activated GdYVO4:Eu3+ nanoparticles induce reactive oxygen species generation in leukocytes without affecting erythrocytes in vitro. Biol Trace Elem Res. 2021. Online ahead of print.
  • Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 2016;1863(12):2977–2992.
  • Suma PR, Padmanabhan RA, Telukutla SR, et al. Vanadium pentoxide nanoparticle mediated perturbations in cellular redox balance and the paradigm of autophagy to apoptosis. Free Radic Biol Med. 2020;161:198–211.
  • Xi WS, Tang H, Liu YY, et al. Cytotoxicity of vanadium oxide nanoparticles and titanium dioxide-coated vanadium oxide nanoparticles to human lung cells. J Appl Toxicol. 2020; 40(5):567–577.
  • Quinteros MA, Cano Aristizábal V, Dalmasso PR, et al. Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicol in Vitro. 2016;36:216–223.
  • De A, Das R, Jain P, et al. Green chemistry-assisted synthesis of CuO nanoparticles: reaction optimization, DNA cleavage, and DNA binding studies. Mater Today Proc. 2020. 49:1–4.
  • Gulbagca F, Ozdemir S, Gulcan M, et al. Synthesis and characterization of rosa canina-mediated biogenic silver nanoparticles for anti-oxidant, antibacterial, antifungal, and DNA cleavage activities. Heliyon. 2019;5(12):e02980.
  • Niño-Martínez N, Orozco S, Martínez-Castañón MF, et al. Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. Int J Mol Sci. 2019;20(11):2808.
  • Rajan AR, Rajan A, John A, et al. Biogenic synthesis of nanostructured Gd2O3: structural, optical and bioactive properties. Ceram Int. 2019;45(17):21947–21952.
  • Aashima Pandey SK, Singh S, Mehta SK, et al. Biocompatible gadolinium oxide nanoparticles as efficient agent against pathogenic bacteria. J Colloid Interface Sci. 2018;529:496–504.
  • Yu Q, Li J, Zhang Y, et al. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci Rep. 2016;6:26667.
  • Bhattacharyya P, Agarwal B, Goswami M, et al. Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae. Antonie Van Leeuwenhoek. 2018;111(1):89–99.
  • Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Public Health. 2017;10(4):369–378.
  • Maleki P, Nemati F, Gholoobi A, et al. Green facile synthesis of silver-doped cerium oxide nanoparticles and investigation of their cytotoxicity and antibacterial activity. Inorg Chem Commun. 2021;131:108762.
  • Dwivedi S, Wahab R, Khan F, et al. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One. 2014;9(11):e111289–9.
  • Zamanpour N, Mohammad Esmaeily A, Mashreghi M, et al. Application of a marine luminescent Vibrio sp. B4L for biosynthesis of silver nanoparticles with unique characteristics, biochemical properties, antibacterial and antibiofilm activities. Bioorg Chem. 2021;114:105102.
  • Achudhan D, Vijayakumar S, Malaikozhundan B, et al. The antibacterial, antibiofilm, antifogging and mosquitocidal activities of titanium dioxide (TiO2) nanoparticles green-synthesized using multiple plants extracts. J Environ Chem Eng. 2020;8(6):104521.
  • Maksimchuk P, Hubenko K, Seminko V, et al. High antioxidant activity of gadolinium-yttrium orthovanadate nanoparticles in cell-free and biological milieu. Nanotechnology. 2022;33(5):055701.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.