212
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Poly(maleic anhydride-alt-1-octadecene)-based bioadhesive nanovehicles improve oral bioavailability of poor water-soluble gefitinib

, , , , , , , & show all
Pages 109-116 | Received 10 Feb 2022, Accepted 30 Jun 2022, Published online: 14 Jul 2022

References

  • Kazandjian D, Blumenthal GM, Yuan W, et al. FDA approval of gefitinib for the treatment of patients with metastatic EGFR mutation-positive non-small cell lung cancer. Clin Cancer Res. 2016;22(6):1307–1312.
  • Muhsin M, Graham J, Kirkpatrick P. Gefitinib. Nat Rev Drug Discov. 2003;2(7):515–516.
  • Zhong WZ, Wang Q, Mao WM, et al. Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage II–IIIA (N1–N2) EGFR-mutant NSCLC: final overall survival analysis of CTONG1104 phase III trial. J Clin Oncol. 2021;39(7):713–722.
  • Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 2017;17(11):637–658.
  • Satari N, Taymouri S, Varshosaz J, et al. Preparation and evaluation of inhalable dry powder containing glucosamine-conjugated gefitinib SLNs for lung cancer therapy. Drug Dev Ind Pharm. 2020;46(8):1265–1277.
  • Noronha V, Patil VM, Joshi A, et al. Gefitinib versus gefitinib plus pemetrexed and carboplatin chemotherapy in EGFR-mutated lung cancer. J Clin Oncol. 2020;38(2):124–136.
  • Mok TS, Cheng Y, Zhou X, et al. Improvement in overall survival in a randomized study that compared dacomitinib with gefitinib in patients with advanced non-small-cell lung cancer and EGFR-activating mutations. J Clin Oncol. 2018;36(22):2244–2250.
  • Srinivas NSK, Verma R, Kulyadi GP, et al. A quality by design approach on polymeric nanocarrier delivery of gefitinib: formulation, in vitro, and in vivo characterization. Int J Nanomedicine. 2017;12:15–28.
  • Williams HD, Ford L, Han SF, et al. Enhancing the oral absorption of kinase inhibitors using lipophilic salts and lipid-based formulations. Mol Pharm. 2018;15(12):5678–5696.
  • Levêque D. Pharmacokinetics of gefitinib and erlotinib. Lancet Oncol. 2011;12(12):1093.
  • Fink C, Sun D, Wagner K, et al. Evaluating the role of solubility in oral absorption of poorly water-soluble drugs using physiologically-based pharmacokinetic modeling. Clin Pharmacol Ther. 2020;107(3):650–661.
  • Alshehri S, Alanazi A, Elzayat EM, et al. Formulation, in vitro and in vivo evaluation of gefitinib solid dispersions prepared using different techniques. Processes. 2021;9(7):1210.
  • Fink C, Lecomte M, Badolo L, et al. Identification of solubility-limited absorption of oral anticancer drugs using PBPK modeling based on rat PK and its relevance to human. Eur J Pharm Sci. 2020;152:105431.
  • Yu H, Badhan RKS. The pharmacokinetics of gefitinib in a Chinese cancer population group: a virtual clinical trials population study. J Pharm Sci. 2021;110(10):3507–3519.
  • Wo HM, He J, Zhao Y, et al. The efficacy and toxicity of gefitinib in treating non-small cell lung cancer: a meta-analysis of 19 randomized clinical trials. J Cancer. 2018;9(8):1455–1465.
  • Godugu C, Doddapaneni R, Patel AR, et al. Novel gefitinib formulation with improved oral bioavailability in treatment of A431 skin carcinoma. Pharm Res. 2016;33(1):137–154.
  • Wollmer E, Ungell A-L, Nicolas J-M, et al. Review of paediatric gastrointestinal physiology relevant to the absorption of orally administered medicines. Adv Drug Deliv Rev. 2022;181:114084.
  • Luo Z, Paunović N, Leroux J-C. Physical methods for enhancing drug absorption from the gastrointestinal tract. Adv Drug Deliv Rev. 2021;175:113814.
  • Maher S, Brayden DJ. Formulation strategies to improve the efficacy of intestinal permeation enhancers. Adv Drug Deliv Rev. 2021;177:113925.
  • Vithani K, Jannin V, Pouton CW, et al. Colloidal aspects of dispersion and digestion of self-dispersing lipid-based formulations for poorly water-soluble drugs. Adv Drug Deliv Rev. 2019;142:16–34.
  • Bakhtiary Z, Barar J, Aghanejad A, et al. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev Ind Pharm. 2017;43(8):1244–1253.
  • Wang Q, Li C, Ren TY, et al. Poly(vinyl methyl ether/maleic anhydride)-doped PEG-PLA nanoparticles for oral paclitaxel delivery to improve bioadhesive efficiency. Mol Pharm. 2017;14(10):3598–3608.
  • Agüeros M, Zabaleta V, Espuelas S, et al. Increased oral bioavailability of paclitaxel by its encapsulation through complex formation with cyclodextrins in poly(anhydride) nanoparticles. J Control Release. 2010;145(1):2–8.
  • Gao F, Zhang Z, Bu H, et al. Nanoemulsion improves the oral absorption of candesartan cilexetil in rats: performance and mechanism. J Control Release. 2011;149(2):168–174.
  • Wang J, Wang Y, Cao H, et al. Orally delivered legumain-activated nanovehicles improve tumor accumulation and penetration for combinational photothermal-chemotherapy. J Control Release. 2020;323:59–70.
  • Zhang Z, Ma L, Jiang S, et al. A self-assembled nanocarrier loading teniposide improves the oral delivery and drug concentration in tumor. J Control Release. 2013;166(1):30–37.
  • Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval. Adv Drug Deliv Rev. 2020;156:80–118.
  • Su C, Liu Y, Li R, et al. Absorption, distribution, metabolism and excretion of the biomaterials used in nanocarrier drug delivery systems. Adv Drug Deliv Rev. 2019;143:97–114.
  • Ruiz-Gatón L, Espuelas S, Huarte J, et al. Nanoparticles from Gantrez® AN-poly(ethylene glycol) conjugates as carriers for oral delivery of docetaxel. Int J Pharm. 2019;571:118699.
  • Varshosaz J, Minaiyan M, Dayyani L. Poly(methyl vinyl ether-co-maleic acid) for enhancement of solubility, oral bioavailability and anti-osteoporotic effects of raloxifene hydrochloride. Eur J Pharm Sci. 2018;112:195–206.
  • Chen XY, Yuk H, Wu JJ, et al. Instant tough bioadhesive with triggerable benign detachment. Proc Natl Acad Sci USA. 2020;117(27):15497–15503.
  • Yin LF, Wang Y, Wang CF, et al. Nano-reservoir bioadhesive tablets enhance protein drug permeability across the small intestine. AAPS PharmSciTech. 2017;18(6):2329–2335.
  • Ahmady A, Abu Samah NH. A review: gelatine as a bioadhesive material for medical and pharmaceutical applications. Int J Pharm. 2021;608:121037.
  • Islam MS, Reineke J, Kaushik R, et al. Bioadhesive food protein nanoparticles as pediatric oral drug delivery system. ACS Appl Mater Interfaces. 2019;11(20):18062–18073.
  • Deng J, Yuk H, Wu JJ, et al. Electrical bioadhesive interface for bioelectronics. Nat Mater. 2021;20(2):229–236.
  • Zhang D, Pan X, Wang S, et al. Multifunctional poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-β-cyclodextrin amphiphilic copolymer as an oral high-performance delivery carrier of tacrolimus. Mol Pharm. 2015;12(7):2337–2351.
  • Attia MF, Dieng SM, Collot M, et al. Functionalizing nanoemulsions with carboxylates: impact on the biodistribution and pharmacokinetics in mice. Macromol Biosci. 2017;17(7):1600471.
  • Peng E, Shi E, Choo G, et al. Multifunctional PEGylated nanoclusters for biomedical applications. Nanoscale. 2013;5(13):5994–6005.
  • Minamisakamoto T, Nishiguchi S, Hashimoto K, et al. Sequential administration of PEG-Span 80 niosome enhances anti-tumor effect of doxorubicin-containing PEG liposome. Eur J Pharm Biopharm. 2021;169:20–28.
  • Zhang ZW, Gao F, Bu HH, et al. Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: in vitro characteristics and absorption mechanism in rats. Nanomedicine. 2012;8(5):740–747.
  • Platel K, Srinivasan K. Studies on the influence of dietary spices on food transit time in experimental rats. Nutr Res. 2001;21(9):1309–1314.
  • McKillop D, Partridge EA, Hutchison M, et al. Pharmacokinetics of gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, in rat and dog. Xenobiotica. 2004;34(10):901–915.
  • Ying KK, Bai BJ, Gao X, et al. Orally administrable therapeutic nanoparticles for the treatment of colorectal cancer. Front Bioeng Biotech. 2021;9:670124.
  • Vinarov Z, Abrahamsson B, Artursson P, et al. Current challenges and future perspectives in oral absorption research: an opinion of the UNGAP network. Adv Drug Deliv Rev. 2021;171:289–331.
  • Xu Y, Shrestha N, Préat V, et al. An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Adv Drug Deliv Rev. 2021;175:113795.
  • Irache JM, Huici M, Konecny M, et al. Bioadhesive properties of Gantrez nanoparticles. Molecules. 2005;10(1):126–145.
  • Ren T, Zheng X, Bai R, et al. Bioadhesive poly(methyl vinyl ether-co-maleic anhydride)-TPGS copolymer modified PLGA/lipid hybrid nanoparticles for improving intestinal absorption of cabazitaxel. Int J Pharm. 2022;611:121301.
  • Chickering DE, Mathiowitz E. Bioadhesive microspheres. 1. A novel electrobalance-based method to study adhesive interactions between individual microspheres and intestinal-mucosa. J Control Release. 1995;34(3):251–262.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.