355
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Development of piperine nanoemulsions: an alternative topical application for hypopigmentation

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 117-127 | Received 16 Feb 2022, Accepted 07 Jul 2022, Published online: 26 Jul 2022

References

  • Shephard S, Panizzon R. Carcinogenic risk of bath PUVA in comparison to oral PUVA therapy. Dermatology. 1999;199(2):106–112.
  • Park H, Lee Y, Chun D. Squamous cell carcinoma in vitiligo lesion after long‐term PUVA therapy. J Eur Acad Dermatol Venereol. 2003;17(5):578–580.
  • Mihăilă B, Dinică RM, Tatu AL, et al. New insights in vitiligo treatments using bioactive compounds from Piper nigrum. Exp Ther Med. 2019;17(2):1039–1044.
  • Altuntaş E, Yener G, Özkan B. Nanocarriers systems and their application for the delivery of different phytoconstituents. Novel Drug Delivery Systems for Phytoconstituents. 2019;9:36.
  • Quijia CR, Araujo VH, Chorilli M. Piperine: chemical, biological and nanotechnological applications. Acta Pharm. 2021;71(2):185–213.
  • Faas L, Venkatasamy R, Hider R, et al. In vivo evaluation of piperine and synthetic analogues as potential treatments for vitiligo using a sparsely pigmented mouse model. Br J Dermatol. 2008;158(5):941–950.
  • Alikhan A, Felsten LM, Daly M, et al. Vitiligo: a comprehensive overview: part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J Am Acad Dermatol. 2011;65(3):473–491.
  • Kildaci I, Budama-Kilinc Y, Kecel-Gunduz S, et al. Linseed oil nanoemulsions for treatment of atopic dermatitis disease: formulation, characterization, in vitro and in silico evaluations. J Drug Delivery Sci Technol. 2021;64:102652.
  • Wulff-Pérez M, Torcello-Gómez A, Gálvez-Ruíz M, et al. Stability of emulsions for parenteral feeding: preparation and characterization of o/w nanoemulsions with natural oils and pluronic f68 as surfactant. Food Hydrocolloids. 2009;23(4):1096–1102.
  • Wik J, Bansal KK, Assmuth T, et al. Facile methodology of nanoemulsion preparation using oily polymer for the delivery of poorly soluble drugs. Drug Deliv Transl Res. 2020;10(5):1228–1240.
  • Teo BSX, Basri M, Zakaria MRS, et al. A potential tocopherol acetate loaded palm oil esters-in-water nanoemulsions for nanocosmeceuticals. J Nanobiotechnology. 2010;8(1):4–11.
  • Javadzadeh Y, Adibkia K, Hamishekar H. Transcutol® (diethylene glycol monoethyl ether): a potential penetration enhancer. In: Percutaneous penetration enhancers chemical methods in penetration enhancement. Berlin (Heidelberg): Springer; 2015. p. 195–205.
  • Goyal U, Arora R, Aggarwal G. Formulation design and evaluation of a self-microemulsifying drug delivery system of lovastatin. Acta Pharm. 2012;62(3):357–370.
  • Solanki SS, Sarkar B, Dhanwani RK. Microemulsion drug delivery system: for bioavailability enhancement of ampelopsin. Int Sch Res Notices. 2012;2012:1–4.
  • Javadzadeh Y, Siahi MR, Asnaashari S, et al. Liquisolid technique as a tool for the enhancement of poorly water-soluble drugs and evaluation of their physicochemical properties. Acta Pharm. 2007;57(1):99–109.
  • Jaworska M, Sikora E, Ogonowski J. The influence of glicerides oil phase on O/W nanoemulsion formation by pic method. Period Polytech Chem Eng. 2014;58(Supplement):43–48.
  • Kulkarni M, Goge N, Date AA. Development of nanoemulsion preconcentrate of capsanthin with improved chemical stability. ASSAY Drug Dev Technol. 2020;18(1):34–44.
  • Jaworska M, Sikora E, Zielina M, et al. Studies on the formation of O/W nano-emulsions, by low-energy emulsification method, suitable for cosmeceutical applications. Acta Biochim Pol. 1970;60(4):779–782.
  • B, Ribeiro E, C, Honorio-França A, L, França, et al. Design and development of nanoemulsion systems containing interferon gamma. Protein Pept Lett. 2016;23(7):626–638.
  • Taha A, Ahmed E, Ismaiel A, et al. Ultrasonic emulsification: an overview on the preparation of different emulsifiers-stabilized emulsions. Trends Food Sci Technol. 2020;105:363–377.
  • Li W, Leong TS, Ashokkumar M, et al. A study of the effectiveness and energy efficiency of ultrasonic emulsification. Phys Chem Chem Phys. 2017;20(1):86–96.
  • Tang SY, Shridharan P, Sivakumar M. Impact of process parameters in the generation of novel aspirin nanoemulsions–comparative studies between ultrasound cavitation and microfluidizer. Ultrason Sonochem. 2013;20(1):485–497.
  • Pongsumpun P, Iwamoto S, Siripatrawan U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason Sonochem. 2020;60:104604.
  • Shanmugam A, Ashokkumar M. Ultrasonic preparation of stable flax seed oil emulsions in dairy systems–physicochemical characterization. Food Hydrocolloids. 2014;39:151–162.
  • Kotte SCB, Dubey P, Murali P. Identification and characterization of stress degradation products of piperine and profiling of a black pepper (Piper nigrum L.) extract using LC/Q-TOF-dual ESI-MS. Anal Methods. 2014;6(19):8022–8029.
  • Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Delivery Rev. 2000;45(1):89–121.
  • Ashokkumar M. The characterization of acoustic cavitation bubbles–an overview. Ultrason Sonochem. 2011;18(4):864–872.
  • Mahdi Jafari S, He Y, Bhandari B. Nano-emulsion production by sonication and microfluidization—a comparison. Int J Food Prop. 2006;9(3):475–485.
  • Li P-H, Chiang B-H. Process optimization and stability of D-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrason Sonochem. 2012;19(1):192–197.
  • Leong T, Wooster T, Kentish S, et al. Minimising oil droplet size using ultrasonic emulsification. Ultrason Sonochem. 2009;16(6):721–727.
  • Ghosh V, Mukherjee A, Chandrasekaran N. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason Sonochem. 2013;20(1):338–344.
  • Sabouri M, Samadi A, Nasrollahi SA, et al. Tretinoin loaded nanoemulsion for acne vulgaris: fabrication, physicochemical and clinical efficacy assessments. Skin Pharmacol Physiol. 2018;31(6):316–323.
  • Hassan A. Effective surfactants blend concentration determination for o/w emulsion stabilization by two nonionic surfactants by simple linear regression. Indian J Pharm Sci. 2015;77(4):461–469.
  • Shakeel F. Rheological behavior and physical stability of caffeine loaded water-in-oil nanoemulsions. Chiang Mai Journal of Science. 2017;44(3):1049–1055.  
  • Navarro-Pérez YM, Cedeño-Linares E, Norman-Montenegro O, et al. Prediction of the physical stability and quality of O/W cosmetic emulsions using full factorial design. J Pharm Pharmacogn Res. 2021;9:98–112.
  • Carpenter J, Saharan VK. Ultrasonic assisted formation and stability of mustard oil in water nanoemulsion: effect of process parameters and their optimization. Ultrason Sonochem. 2017;35(Pt A):422–430.
  • Bernardi DS, Pereira TA, Maciel NR, et al. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. J Nanobiotechnology. 2011;9(1):44–49.
  • Glass BD, Haywood A. Stability considerations in liquid dosage forms extemporaneously prepared from commercially available products. J Pharm Pharm Sci. 2006;9(3):398–426.
  • Singh NK, Kumar P, Gupta DK, et al. UV-spectrophotometric method development for estimation of piperine in chitrakadi vati. Der Pharmacia Lettre. 2011;3(3):178–182.
  • Mehrandish S, Mirzaeei S. Design of novel nanoemulsion formulations for topical ocular delivery of itraconazole: development, characterization and in vitro bioassay. Adv Pharm Bull. 2022;12(1):93–101.
  • Ma HL, Varanda LC, Perussi JR, et al. Hypericin-loaded oil-in-water nanoemulsion synthesized by ultrasonication process enhances photodynamic therapy efficiency. J Photochem Photobiol, B. 2021;223:112303.
  • Thakkar HP, Khunt A, Dhande RD, et al. Formulation and evaluation of itraconazole nanoemulsion for enhanced oral bioavailability. J Microencapsul. 2015;32(6):559–569.
  • Sosa L, Clares B, Alvarado HL, et al. Amphotericin B releasing topical nanoemulsion for the treatment of candidiasis and aspergillosis. Nanomedicine. 2017;13(7):2303–2312.
  • Rajitha P, Shammika P, Aiswarya S, et al. Chaulmoogra oil based methotrexate loaded topical nanoemulsion for the treatment of psoriasis. J Drug Delivery Sci Technol. 2019;49:463–476.
  • Zafar A, Imam SS, Alruwaili NK, et al. Development of piperine-loaded solid self-nanoemulsifying drug delivery system: optimization, in-vitro, ex-vivo, and in-vivo evaluation. Nanomaterials. 2021;11(11):2920.
  • Miastkowska M, Sikora E, Ogonowski J, et al. The kinetic study of isotretinoin release from nanoemulsion. Colloids Surf A. 2016;510:63–68.
  • Abdubakiev S, Li H, Lu X, et al. N-Alkylamides from Piper longum L. and their stimulative effects on the melanin content and tyrosinase activity in B16 melanoma cells. Nat Prod Res. 2020;34(17):2510–2513.
  • Hashim NA, Ahmad F, Salleh W, et al. Phytochemicals and tyrosinase inhibitory activity from piper caninum and piper magnibaccum. Pharm Sci. 2019;25(4):358–363.
  • Matsuda H, Kawaguchi Y, Yamazaki M, et al. Melanogenesis stimulation in murine B16 melanoma cells by Piper nigrum leaf extract and its lignan constituents. Biol Pharm Bull. 2004;27(10):1611–1616.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.