410
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Raloxifene HCl – quercetin co-amorphous system: preparation, characterization, and investigation of its behavior in phosphate buffer

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 227-238 | Received 12 Apr 2022, Accepted 16 Jul 2022, Published online: 27 Jul 2022

References

  • Delmas PD. Treatment of postmenopausal osteoporosis. Lancet. 2002;359(9322):2018–2026.
  • Tankó LB, Christiansen C, Cox DA, et al. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res. 2005;20(11):1912–1920.
  • Black DM, Rosen CJ. Postmenopausal osteoporosis. N Engl J Med. 2016;374(3):254–262.
  • Ji M-X, Yu Q. Primary osteoporosis in postmenopausal women. Chronic Dis Transl Med. 2015;1(1):9–13.
  • Sambrook P, Cooper C. Osteoporosis. Lancet. 2006;367(9527):2010–2018.
  • Tella SH, Gallagher JC. Prevention and treatment of postmenopausal osteoporosis. J Steroid Biochem Mol Biol. 2014;142:155–170.
  • Loza E. Treatment of postmenopausal osteoporosis. An Sist Sanit Navar. 2003;26(3):91–98.
  • Hong S, Chang JO, Jeong K, et al. Raloxifene as a treatment option for viral infections. J Microbiol. 2021;59(2):124–131.
  • Veenman L. Raloxifene as treatment for various types of brain injuries and neurodegenerative diseases: a good start. Int J Mol Sci. 2020;21(20):1–31.
  • Kanis JA, McCloskey EV, Johansson H, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2013;24(1):23–57.
  • Cauley JA, Norton L, Lippman ME, et al. Continued breast cancer risk reduction in postmenopausal women treated with raloxifene: 4-Year results from the MORE trial. Breast Cancer Res Treat. 2001;65(2):125–134.
  • Yu EW, Tsourdi E, Clarke BL, et al. Osteoporosis management in the era of COVID-19. J Bone Miner Res. 2020;35(6):1009–1013.
  • Bikiaris D, Karavelidis V, Karavas E. Novel biodegradable polyesters. Synthesis and application as drug carriers for the preparation of raloxifene HCl loaded nanoparticles. Molecules. 2009;14(7):2410–2430.
  • Elkasabgy NA, Abdel-Salam FS, Mahmoud AA, et al. Long lasting in-situ forming implant loaded with raloxifene HCl: an injectable delivery system for treatment of bone injuries. Int J Pharm. 2019;571:118703.
  • Jagadish B, Yelchuri R, Bindu K, et al. Enhanced dissolution and bioavailability of raloxifene hydrochloride by co-grinding with different superdisintegrants. Chem Pharm Bull (Tokyo). 2010;58(3):293–300.
  • Varshosaz J, Dayani L, Chegini SP, et al. Production of a new platform based on fumed and mesoporous silica nanoparticles for enhanced solubility and oral bioavailability of raloxifene HCl. IET Nanobiotechnol. 2019;13(4):392–399.
  • Park JH, Eom S, Kim DS, et al. Double-layered PLGA microspheres for effective controlled release of raloxifene-HCl: preparation and characterization. Tissue Eng Regen Med. 2009;6(12):1172–1178.
  • Park JH, Kim SH, Ahn SI, et al. Characterization and improved dissolution rate of raloxifene HCl solid dispersion. Tissue Eng Regen Med. 2009;6(1–3):77–82.
  • Babanejad N, Farhadian A, Omrani I, et al. Design, characterization and in vitro evaluation of novel amphiphilic block sunflower oil-based polyol nanocarrier as a potential delivery system: raloxifene-hydrochloride as a model. Mater Sci Eng C Mater Biol Appl. 2017;78:59–68.
  • Patil PH, Belgamwar VS, Patil PR, et al. Enhancement of solubility and dissolution rate of poorly water soluble raloxifene using microwave induced fusion method. Braz J Pharm Sci. 2013;49(3):571–578.
  • Shim JB, Lee JK, Jo H, et al. Effect of acidifier on the dissolution property of a solid dispersion of raloxifene HCl. Macromol Res. 2013;21(1):42–48.
  • Oh MJ, Shim JB, Yoo H, et al. The dissolution property of raloxifene HCl solid dispersion using hydroxypropyl methylcellulose. Macromol Res. 2012;20(8):835–841.
  • Rajinikanth PS, Balasubramaniam J, Thilek Kumar M, et al. Spray drying as an approach for enhancement of dissolution and bioavailability of raloxifene hydrochloride. Int J Drug Deliv. 2012;4(2):246–256.
  • Varshosaz J, Minaiyan M, Dayyani L. Poly(methyl vinyl ether-co-maleic acid) for enhancement of solubility, oral bioavailability and anti-osteoporotic effects of raloxifene hydrochloride. Eur J Pharm Sci. 2018;112:195–206.
  • Bikiaris D, Karavelidis V, Karavas E. Effectiveness of various drug carriers in controlled release formulations of raloxifene HCl prepared by melt mixing. Curr Drug Deliv. 2009;6(5):425–436.
  • Garg A, Singh S, Rao VU, et al. Solid state interaction of raloxifene HCl with different hydrophilic carriers during co-grinding and its effect on dissolution rate. Drug Dev Ind Pharm. 2009;35(4):455–470.
  • Nabi-Meibodi M, Vatanara A, Najafabadi AR, et al. The effective encapsulation of a hydrophobic lipid-insoluble drug in solid lipid nanoparticles using a modified double emulsion solvent evaporation method. Colloids Surf B Biointerfaces. 2013;112:408–414.
  • Ravi PR, Aditya N, Kathuria H, et al. Lipid nanoparticles for oral delivery of raloxifene: optimization, stability, in vivo evaluation and uptake mechanism. Eur J Pharm Biopharm. 2014;87(1):114–124.
  • Burra M, Jukanti R, Janga KY, et al. Enhanced intestinal absorption and bioavailability of raloxifene hydrochloride via lyophilized solid lipid nanoparticles. Adv Powder Technol. 2013;24(1):393–402.
  • Singh S, Kushwaha AK, Vuddanda PR, et al. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. Biomed Res Int. 2013;2013:1–9.
  • Panda C, Chauhan SP, Balamurugan K. Formulation and in vitro characterization of raloxifene nanostructured lipid carriers for oral delivery with full factorial design-based studies using quality by design (qbd) approach. Int J Res Pharm Sci. 2020;11(4):6417–6427.
  • Komala DR, Janga KY, Jukanti R, et al. Competence of raloxifene hydrochloride loaded liquisolid compacts for improved dissolution and intestinal permeation. J Drug Deliv Sci Technol. 2015;30:232–241.
  • Jha RK, Tiwari S, Mishra B. Bioadhesive microspheres for bioavailability enhancement of raloxifene hydrochloride: formulation and pharmacokinetic evaluation. AAPS PharmSciTech. 2011;12(2):650–657.
  • Mutlu Ağardan NB, Değim Z, Yilmaz Ş. Antitumoral and MMP-2 inhibition activity of raloxifene or tamoxifen loaded nanoparticles containing dimethyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2014;80(1–2):31–36.
  • P. Thakkar H, Savsani H, Kumar P. Ethosomal hydrogel of raloxifene HCl: statistical optimization & ex vivo permeability evaluation across microporated pig ear skin. Curr Drug Deliv. 2016;13(7):1111–1122.
  • Mahmood S, Mandal UK, Chatterjee B. Transdermal delivery of raloxifene HCl via ethosomal system: formulation, advanced characterizations and pharmacokinetic evaluation. Int J Pharm. 2018;542(1–2):36–46.
  • Malekar SA, Sarode AL, Bach AC, et al. Radio frequency-activated nanoliposomes for controlled combination drug delivery. AAPS PharmSciTech. 2015;16(6):1335–1343.
  • Bhama S, Sambathkumar R, Shanmuga Sundaram R. Preparation and characterization of raloxifene proniosomes using sorbitan esters. Int J Res Pharm Sci. 2016;7(2):142–149.
  • Nair AR, Lakshman YD, Anand VSK, et al. Overview of extensively employed polymeric carriers in solid dispersion technology. AAPS PharmSciTech. 2020;21(8):309.
  • Huguet-Casquero A, Gainza E, Pedraz JL. Towards green nanoscience: from extraction to nanoformulation. Biotechnol Adv. 2021;46(2021):107657.
  • Mukhopadhyay R, Kazi J, Debnath MC. Synthesis and characterization of copper nanoparticles stabilized with Quisqualis indica extract: evaluation of its cytotoxicity and apoptosis in B16F10 melanoma cells. Biomed Pharmacother. 2018;97:1373–1385.
  • Zhao Y, Chen F, Pan Y, et al. Nanodrug formed by coassembly of dual anticancer drugs to inhibit cancer cell drug resistance. ACS Appl Mater Interfaces. 2015;7(34):19295–19305.
  • Qian S, Heng W, Wei Y, et al. Coamorphous lurasidone hydrochloride-saccharin with charge-assisted hydrogen bonding interaction shows improved physical stability and enhanced dissolution with ph-independent solubility behavior. Cryst Growth Des. 2015;15(6):2920–2928.
  • Laitinen R, Löbmann K, Grohganz H, et al. Supersaturating drug delivery systems: the potential of co-amorphous drug formulations. Int J Pharm. 2017;532(1):1–12.
  • Sai Krishna Anand V, Sakhare SD, Navya Sree KS, et al. The relevance of co-amorphous formulations to develop supersaturated dosage forms: in-vitro, and ex-vivo investigation of Ritonavir-Lopinavir co-amorphous materials. Eur J Pharm Sci. 2018;123:124–134.
  • Salunkhe N, Jadhav N, More H, et al. Sericin inhibits devitrification of amorphous drugs. AAPS PharmSciTech. 2019;20(7):1–12.
  • Teja A, Musmade PB, Khade AB, et al. Simultaneous improvement of solubility and permeability by fabricating binary glassy materials of talinolol with naringin: solid state characterization, in-vivo in-situ evaluation. Eur J Pharm Sci. 2015;78:234–244.
  • Yarlagadda DL, Sai Krishna Anand V, Nair AR, et al. Considerations for the selection of co-formers in the preparation of co-amorphous formulations. Int J Pharm. 2021;602:120649.
  • Kasten G, Grohganz H, Rades T, et al. Development of a screening method for co-amorphous formulations of drugs and amino acids. Eur J Pharm Sci. 2016;95:28–35.
  • Kasten G, Löbmann K, Grohganz H, et al. Co-former selection for co-amorphous drug-amino acid formulations. Int J Pharm. 2019;557:366–373.
  • Dengale SJ, Hussen SS, Krishna BSM, et al. Fabrication, solid state characterization and bioavailability assessment of stable binary amorphous phases of ritonavir with quercetin. Eur J Pharm Biopharm. 2015;89:329–338.
  • Nair A, Varma R, Gourishetti K, et al. Influence of preparation methods on physicochemical and pharmacokinetic properties of co-amorphous formulations: the case of co-amorphous atorvastatin: naringin. J Pharm Innov. 2020;15(3):365–379.
  • Wei Y, Zhou S, Hao T, et al. Further enhanced dissolution and oral bioavailability of docetaxel by coamorphization with a natural P-gp inhibitor myricetin. Eur J Pharm Sci. 2019;129:21–30.
  • Ojarinta R, Lerminiaux L, Laitinen R. Spray drying of poorly soluble drugs from aqueous arginine solution. Int J Pharm. 2017;532(1):289–298.
  • Ojarinta R, Heikkinen AT, Sievänen E, et al. Dissolution behavior of co-amorphous amino acid-indomethacin mixtures: the ability of amino acids to stabilize the supersaturated state of indomethacin. Eur J Pharm Biopharm. 2017;112:85–95.
  • Park H, Jin Seo H, Hong S h, et al. Characterization and therapeutic efficacy evaluation of glimepiride and L-arginine co-amorphous formulation prepared by supercritical antisolvent process: influence of molar ratio and preparation methods. Int J Pharm. 2020;581:119232.
  • Lenz E, Löbmann K, Rades T, et al. Hot melt extrusion and spray drying of co-amorphous indomethacin-arginine with polymers. J Pharm Sci. 2017;106(1):302–312.
  • Arnfast L, Kamruzzaman M, Löbmann K, et al. Melt extrusion of high-dose co-amorphous drug-drug combinations: theme: formulation and manufacturing of solid dosage forms guest editors: tony zhou and tonglei Li. Pharm Res. 2017;34(12):2689–2697.
  • Formica JV, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol. 1995;33(12):1061–1080.
  • Hatwar P, Pathan IB, Chishti NAH, et al. Pellets containing quercetin amino acid co-amorphous mixture for the treatment of pain: formulation, optimization, in-vitro and in-vivo study. J Drug Deliv Sci Technol. 2021;62:102350.
  • Park KH, Choi JM, Cho E, et al. Enhancement of solubility and bioavailability of quercetin by inclusion complexation with the cavity of Mono-6-deoxy-6-aminoethylamino-β-cyclodextrin. Bull. Korean Chem Soc. 2017;38(8):880–889.
  • Raloxifene hydrochloride | C28H28ClNO4S – PubChem. 2019. [Internet]. [cited 2019 Apr 11]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/raloxifene_hydrochloride#section=Substances-by-Category
  • Quercetin | C15H10O7 – PubChem. 2021. [Internet]. [cited 2021 Jun 18]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Quercetin
  • Navya Sree KS, Dengale SJ, Mutalik S, et al. Dronedarone HCl—quercetin Co-Amorphous system: characterization and RP—HPLC method development for simultaneous estimation. J AOAC Int. 2021;104(5):1232–1237.
  • Jensen KT, Larsen FH, Löbmann K, et al. Influence of variation in molar ratio on co-amorphous drug-amino acid systems. Eur J Pharm Biopharm. 2016;107:32–39.
  • EMA. Scientific discussion - evista internet]. 2021. [cited 2021 Jun 27]. Available from https://www.ema.europa.eu/en/documents/scientific-discussion/evista-epar-scientific-discussion_en.pdf
  • Ch PR, Reddy Mallu U, S Prasad KR. Development and validation of an HPLC-UV method for the determination of raloxifene and related products (impurities). Rasayan J Chem. 2016;9(4):878–888.
  • Niraj ST ,Lynne ST. Thermodynamics of highly supersaturated aqueous solutions of poorly Water-Soluble Drugs-Impact of a second drug on the solution phase behavior and implications for combination products. J Pharm Sci. 2015;104(8):2583–2593.
  • Avdeef A. Phosphate precipitates and Water-Soluble aggregates in re-analyzed solubility-pH data of twenty-five basic drugs. Admet Dmpk. 2014;2(1):43–55.
  • Shoufeng L ,SuiMing W ,Sundeep S, et al. Investigation of solubility and dissolution of a free base and two different salt forms as a function of pH. Pharm Res. 2005;22(4):628–635.
  • Chegireddy M, Hanegave GK, Lakshman D, et al. The significance of utilizing in vitro transfer model and media selection to study the dissolution performance of weak ionizable bases: investigation using saquinavir as a model drug. AAPS PharmSciTech. 2020;21(2):47.
  • Mishra J, Rades T, Löbmann K, et al. Influence of solvent composition on the performance of spray-dried co-amorphous formulations. Pharmaceutics. 2018;10(2):47.
  • Potassium phosphate monobasic ACS reagent | 7778-77-0. 2021. [Internet]. [cited 2021 Jul 17]. Available from: https://www.sigmaaldrich.com/IN/en/product/vetec/v000225

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.