378
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Empagliflozin containing chitosan-alginate nanoparticles in orodispersible film: preparation, characterization, pharmacokinetic evaluation and its in-vitro anticancer activity

, , , , , , ORCID Icon & ORCID Icon show all
Pages 279-291 | Received 23 Dec 2021, Accepted 28 Jul 2022, Published online: 10 Aug 2022

References

  • https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/204629Orig1s000SumR.pdf.
  • https://www.medicines.org.uk/emc/product/5441/smpc.
  • https://docs.boehringer-ingelheim.com/Prescribing%20Information/PIs/Glyxambi/Glyxambi.pdf
  • BroedlU Eynatten MV, Macha S, Woerle HJ, et al., Inventors; Boehringer Ingelheim, assignee. Therapeutic uses of empagliflozin. WO2014161919A1. 2014.
  • Kaushik VK, Tummanepally JMC, Pothani J, et al., inventors,; Mylan Laboratories Limited, assignee. Process for the preparation of empagliflozin. WO2015101916A1. 2015.
  • Jetti RR, Bommareddy AR, Singh A, et al., inventors; Mylan Laboratories Limited, assignee. Amorphous Empagliflozin. US20170319539A1. 2017.
  • Scheen AJ. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2014;53(3):213–225.
  • Kanada S, Koiwai K, Taniguchi A, et al. Pharmacokinetics, pharmacodynamics, safety and tolerability of 4 weeks treatment with empagliflozin in Japanese patients with type 2 diabetes mellitus. J Diabetes Invest. 2013;4(6):613–617.
  • https://www.ema.europa.eu/en/documents/variation-report/jardiance-h-c-2677-p46-0007-epar-assessment-report_en.pdf.
  • Neumiller JJ. Empagliflozin: a new sodium glucose co-transporter 2 (SGLT2) inhibitor for the treatment of type II diabetes. Drugs Context. 2014;3:212262–212262.
  • Neeland IJ, McGuire DK, Chilton R, et al. Empagliflozin reduces body weight and indices of adipose distribution in patients with type 2 diabetes mellitus. Diab Vasc Dis Res. 2016;13(2):119–126.
  • Cheng ST, Chen L, Li SY, et al. Effects of empagliflozin, an sglt2 inhibitor, on pancreatic β-cell mass and glucose homeostasis in type 1 diabetes. PLOS One. 2016;11(1):e0147391.
  • Zhang L, Eisenbarth GS. Prediction and prevention of type 1 diabetes mellitus. J Diabetes. 2011;3(1):48–57.
  • Fowler MJ. Hypoglycemia. ClinicalDiabetes. 2008;26(4):170–173.
  • Vallon V, Platt KA, Cunard R, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol. 2011;22(1):104–112.
  • Vallon V, Thomson SC. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol. 2012;74:351–375.
  • Jurczak MJ, Lee HY, Birkenfeld AL, et al. SGLT2 deletion improves glucose homeostasis and preserves pancreatic beta-cell function. Diabetes. 2011;60(3):890–898.
  • Washburn WN, Poucher SM. Differentiating sodium-glucose co-transporter-2 inhibitors in development for the treatment of type 2 diabetes mellitus. Expert Opin Investig Drugs. 2013;22(4):463–486.
  • Thomas L, Grempler R, Eckhardt M, et al. Long-term treatment with empagliflozin, a novel, potent and selective SGLT-2 inhibitor, improves glycaemic control and features of metabolic syndrome in diabetic rats. Diabetes Obes Metab. 2012;14(1):94–96.
  • Luippold G, Klein T, Mark M, et al. Empagliflozin, a novel potent and selective SGLT-2 inhibitor, improves glycaemic control alone and in combination with insulin in streptozotocin-induced diabetic rats, a model of type 1 diabetes mellitus. Diabetes Obes Metab. 2012;14(7):601–607.
  • Lamos EM, Younk LM, Davis SN. Empagliflozin, a sodium glucose co-transporter 2 inhibitor, in the treatment of type 1 diabetes. Expert Opin Investig Drugs. 2014;23(6):875–882.
  • Radlinger B, Hornsteiner F, Folie S, et al. Cardioprotective effects of short-term empagliflozin treatment in db/db mice. Sci Rep. 2020;10(1):19686.
  • Eliaa SG, Al-Karmalawy AA, Saleh RM, et al. Empagliflozin and doxorubicin synergistically inhibit the survival of triple-negative breast cancer cells via interfering with the mtor pathway and inhibition of calmodulin: in vitro and molecular docking studies. ACS Pharmacol Transl Sci. 2020;3(6):1330–1338.
  • Faridi U, Al-Mutairi F, Parveen H, et al. An in vitro and in silico anticancer study of FDA approved antidiabetic drugs glimepiride and empagliflozin. Life Science. 2020;10:72.
  • Luo J, Hendryx M, Qi L, et al. Pre-existing diabetes and lung cancer prognosis. Br J Cancer. 2016;115(1):76–79.
  • Garcia-Jimenez C, Garcia-Martinez JM, Chocarro-Calvo A, et al. A new link between diabetes and cancer: enhanced WNT/beta-catenin signaling by high glucose. J Mol Endocrinol. 2014;52(1):R51–R66.
  • Morss AS, Edelman ER. Glucose modulates basement membrane fibroblast growth factor-2 via alterations in endothelial cell permeability. J Biol Chem. 2007;282(19):14635–14644.
  • (a) Broedl U, Eynatten MV, Johansen OE, et al., inventors; Boehringer ingelheim, assignee. Pharmaceutical composition, methods for treating and uses thereof. WO2013007557A1. 2013; (b) Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol. 2018;109:273–286.
  • (a) Singh A, Kharb V, Saharan VA. Fast dissolving/disintegrating dosage forms of natural active compounds and alternative medicines. Recent Pat Drug Deliv Formul. 2020;14(1):21–39. (b) Li P, Dai YN, Zhang JP, et al. Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci. 2008;4(3):221–228.
  • (a) Dixit RP, Puthli SP. Oral strip technology: overview and future potential. J Control Release. 2009;139(2):94–107. (b) Sinha S, Garg V, Singh S, et al. Chitosan-alginate core-shell-corona shaped nanoparticles of dimethyl fumarate in orodispersible film to improve bioavailability in treatment of multiple sclerosis: preparation, characterization and biodistribution in rats. J. Drug Deliv. Sci. Technol. 2021;64:102645.
  • Chonkar AD, Rao JV, Managuli RS, et al. Development of fast dissolving oral films containing lercanidipine HCl nanoparticles in semicrystalline polymeric matrix for enhanced dissolution and ex vivo permeation. Eur J Pharm Biopharm. 2016;103:179–191.
  • Chen L, Daoxiao C, Xinhui Z, et al. Oral fast-dissolving films containing lutein nanocrystals for improved bioavailability: formulation development, in vitro and in vivo evaluation. AAPS PharmSciTech. 2017;18:2957–2964.
  • Bharti K, Mittal P, Mishra B. Formulation and characterization of fast dissolving oral films containing buspirone hydrochloride nanoparticles using design of experiment. J Drug Deliv Sci Technol. 2019;49:420–432.
  • Qing S, Chengying S, Baode S, et al. Development of a fast-dissolving sublingual film containing meloxicam nanocrystals for enhanced dissolution and earlier absorption. Drug Deliv Sci Technol. 2018;43:243–252.
  • Shen BD, Shen CY, Yuan XD, et al. Development and characterization of an orodispersible film containing drug nanoparticles. Eur J Pharm Biopharm. 2013;85(3 Pt B):1348–1356.
  • Kilor V, Sapkal N, Daud A, et al. Development of stable nanosuspension loaded oral films of glimepiride with improved bioavailability. Int J App Pharm. 2017;9(2):28–33.
  • Mazzarino L, Borsali R, Lemos-Senna E. Mucoadhesive films containing chitosan-coated nanoparticles: a new strategy for buccal curcumin release. J Pharm Sci. 2014;103(11):3764–3771.
  • Mohammed M, Syeda J, Wasan K, et al. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9(4):53.
  • Cui F, He C, Yin L, et al. Nanoparticles incorporated in bilaminated films: a smart drug delivery system for oral formulations. Biomacromolecules. 2007;8(9):2845–2850.
  • Li P, Dai YN, Zhang JP, et al. Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci. 2008;4:221–228.
  • USP34-NF29 general notices, general notices and requirements, applying to standards, tests, assays, and other specifications of the United States Pharmacopeia, 2011, 1–14. https://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/generalNoticesandRequirementsFinal.pdf
  • Gollu G, Gummadi S. A rapid LC-PDA method for the simultaneous quantification of metformin, empagliflozin and linagliptin in pharmaceutical dosage form. 2022;80(1):48–58.
  • Joshi MD, Müller RH. Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm. 2009;71(2):161–172.
  • Kevadiya BD, Barvaliya M, Zhang L, et al. Fenofibrate nanocrystals embedded in oral strip-films for bioavailability enhancement. Bioengineering. 2018;5(1):16.
  • Herrera LC, Tesoriero MV, Hermida LG. In vitro release testing of PLGA microspheres with Franz diffusion cells. Dissolution Technol. 2012;19(2):6–11.
  • Esposito E, Mariani P, Ravani L, et al. Nanoparticulate lipid dispersions for bromocriptine delivery: characterization and in vivo study. Eur J Pharm Biopharm. 2012;80(2):306–314.
  • Peppas NA. Analysis of fickian and non-fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110–111.
  • Maher EM, Ali AM, Salem HF, et al. In vitro/in vivo evaluation of an optimized fast dissolving oral film containing olanzapine co-amorphous dispersion with selected carboxylic acids. Drug Deliv. 2016;23(8):3088–3100.
  • Dash S, Murthy PN, Nath L, et al. Kinetic modelling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67:217–223.
  • Mukhopadhyay P, Maity S, Mandal S, et al. Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate nanoparticle for diabetes treatment. Carbohydr Polym. 2018;182:42–51.
  • Jianhua L, Jie X, Feng L, et al. Chitosan-sodium alginate nanoparticle as a delivery system for ε-polylysine: preparation, characterization and antimicrobial activity. Food Control. 2018;91:302–310.
  • Göppert TM, Müller RH. Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target. 2005;13(3):179–187.
  • Almeida JPM, Chen AL, Foster A, et al. In vivo biodistribution of nanoparticles. Nanomedicine. 2011;65: (5):815–835.
  • Ashizawa K. Nanosize particle analysis by dynamic light scattering (DLS). Yakugaku Zasshi. 2019;139(2):237–248.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.