414
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Nisin and nisin-loaded nanoparticles: a cytotoxicity investigation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 310-321 | Received 23 Oct 2021, Accepted 02 Aug 2022, Published online: 26 Aug 2022

References

  • WHO. Caner Geneva: World Health Organization; 2021. [cited 2021 15 July]. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.
  • Kaur S, Kaur S. Bacteriocins as potential anticancer agents. Front Pharmacol. 2015;6:272.
  • Khazaei Monfared Y, Mahmoudian M, Cecone C, et al. Stabilization and anticancer enhancing activity of the peptide nisin by cyclodextrin-based nanosponges against colon and breast cancer cells. Polymers. 2022;14(3):594.
  • Chandrasekar V, Coupland JN, Anantheswaran RC. Characterization of nisin containing chitosan-alginate microparticles. Food Hydrocolloid. 2017;69:301–307.
  • Brötz H, Sahl H-G. New insights into the mechanism of action of lantibiotics—diverse biological effects by binding to the same molecular target. J Antimicrob Chemother. 2000;46(1):1–6.
  • USFDA. Microorganisms & Microbial-Derived Ingredients Used in Food (Partial List) Silver Spring: U. S. Food & Drug Administration; 2018. [cited 2020 02 January]. Available from: https://www.fda.gov/food/generally-recognized-safe-gras/microorganisms-microbial-derived-ingredients-used-food-partial-list.
  • Rana K, Kumar Pandey S, Chauhan S, et al. Anticancer therapeutic potential of 5-fluorouracil and nisin co-loaded chitosan coated silver nanoparticles against murine skin cancer. Int J Pharm. 2022; 620:121744.
  • Patil SM, Kunda NK. Nisin ZP, an antimicrobial peptide, induces cell death and inhibits Non-Small cell lung cancer (NSCLC) progression in vitro in 2D and 3D cell culture. Pharm Res. 2022. doi:10.1007/s11095-022-03220-2
  • Schweizer F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol. 2009;625(1-3):190–194.
  • Gao FH, Abee T, Konings WN. Mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome c oxidase-containing proteoliposomes. Appl Environ Microbiol. 1991;57(8):2164–2170.
  • Moll GN, Clark J, Chan WC, et al. Role of transmembrane pH gradient and membrane binding in nisin pore formation. J Bacteriol. 1997;179(1):135–140.
  • Mohammadi P, Zangeneh M, Mohammadi-Motlagh H-R, et al. The antimicrobial peptide, nisin, synergistically enhances the cytotoxic and apoptotic effects of rituximab treatment on human Burkitt's lymphoma cell lines. Rep Biochem Mol Biol. 2020;9(3):250–256.
  • Prince A, Tiwari A, Ror P, et al. Attenuation of neuroblastoma cell growth by nisin is mediated by modulation of phase behavior and enhanced cell membrane fluidity. Phys Chem Chem Phys. 2019;21(4):1980–1987.
  • Joo NE, Ritchie K, Kamarajan P, et al. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC 1. Cancer Med. 2012;1(3):295–305.
  • Hosseini SS, Hajikhani B, Faghihloo E, et al. Increased expression of caspase genes in colorectal cancer cell line by nisin [research article]. Arch Clin Infect Dis. 2020;15(2):e97734.
  • Jain SK, Haider T, Kumar A, et al. Lectin-Conjugated clarithromycin and acetohydroxamic Acid-Loaded PLGA nanoparticles: a novel approach for effective treatment of H. pylori. AAPS PharmSciTech. 2016;17(5):1131–1140.
  • Haider T, Tiwari R, Vyas SP, et al. Molecular determinants as therapeutic targets in cancer chemotherapy: an update. Pharmacol Ther. 2019;200:85–109.
  • Tiwari R, Jain P, Asati S, et al. State-of-art based approaches for anticancer drug-targeting to nucleus. J Drug Deliv Sci Technol. 2018;48:383–392.
  • Hoda M, Pajaniradje S, Shakya G, et al. Anti-proliferative and apoptosis-triggering potential of disulfiram and disulfiram-loaded polysorbate 80-stabilized PLGA nanoparticles on hepatocellular carcinoma Hep3B cell line. Nanomedicine. 2016;12(6):1641–1650.
  • Patra S, Mukherjee S, Barui AK, et al. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C Mater Biol Appl. 2015;53:298–309.
  • Pandey V, Haider T, Chandak AR, et al. Surface modified silk fibroin nanoparticles for improved delivery of doxorubicin: development, characterization, in-vitro studies. Int J Biol Macromol. 2020; 164:2018–2027.
  • Haider T, Pandey V, Behera C, et al. Spectrin conjugated PLGA nanoparticles for potential membrane phospholipid interactions: development, optimization and in vitro studies. J Drug Deliv Sci Technol. 2020; :102087.
  • Qi F, Wu J, Fan QZ, et al. Preparation of uniform-sized exenatide-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency and bio-stability. Colloids Surf B Biointerfaces. 2013;112:492–498.
  • He ZL, Sun Y, Wang Q, et al. Degradation and Bio-Safety evaluation of mPEG-PLGA-PLL Copolymer-Prepared nanoparticles. J Phys Chem C. 2015;119(6):3348–3362.
  • Chopra M, Kaur P, Bernela M, et al. Surfactant assisted nisin loaded chitosan-carageenan nanocapsule synthesis for controlling food pathogens. Food Control. 2014;37:158–164.
  • Zhu XM, Wu H, Yang J, et al. Antibacterial activity of chitosan grafting nisin: preparation and characterization. React Funct Polym. 2015; 91-92:71–76.
  • Sebak S, Mirzaei M, Malhotra M, et al. Human serum albumin nanoparticles as an efficient noscapine drug delivery system for potential use in breast cancer: preparation and in vitro analysis. Int J Nanomedicine. 2010;5:525–532.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
  • Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82(13):1107–1112.
  • Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1(3):1112–1116.
  • Dheer D, Behera C, Singh D, et al. Design, synthesis and comparative analysis of triphenyl-1,2,3-triazoles as anti-proliferative agents. Eur J Med Chem. 2020;207:112813.
  • Shukla MK, Behera C, Chakraborty S, et al. Tumor micro-environment targeted collagenase-modified albumin nanoparticles for improved drug delivery. J Drug Deliv Sci Technol. 2022;71:103366.
  • Kang YH, Lee E, Choi MK, et al. Role of reactive oxygen species in the induction of apoptosis by alpha-tocopheryl succinate. Int J Cancer. 2004;112(3):385–392.
  • Zang Y, Beard RL, Chandraratna RA, et al. Evidence of a lysosomal pathway for apoptosis induced by the synthetic retinoid CD437 in human leukemia HL-60 cells. Cell Death Differ. 2001; 8(5):477–485.
  • Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–133.
  • Plati J, Bucur O, Khosravi-Far R. Apoptotic cell signaling in cancer progression and therapy. Integr Biol (Camb). 2011;3(4):279–296.
  • Haider T, Pandey V, Banjare N, et al. Drug resistance in cancer: mechanisms and tackling strategies. Pharmacol Rep. 2020;72(5):1125–1151.
  • Vakilinezhad MA, Alipour S, Montaseri H. Fabrication and in vitro evaluation of magnetic PLGA nanoparticles as a potential methotrexate delivery system for breast cancer. J Drug Deliv Sci Technol. 2018;44:467–474.
  • Hamoudeh M, Al Faraj A, Canet-Soulas E, et al. Elaboration of PLLA-based superparamagnetic nanoparticles: characterization, magnetic behaviour study and in vitro relaxivity evaluation. Int J Pharm. 2007; 338(1-2):248–257.
  • Saadati R, Dadashzadeh S. Marked effects of combined TPGS and PVA emulsifiers in the fabrication of etoposide-loaded PLGA-PEG nanoparticles: in vitro and in vivo evaluation. Int J Pharm. 2014;464(1-2):135–144.
  • Di Francesco M, Celia C, Cristiano MC, et al. Doxorubicin hydrochloride-loaded nonionic surfactant vesicles to treat metastatic and non-metastatic breast cancer. ACS Omega. 2021; 6(4):2973–2989.
  • Joseph E, Singhvi G. Multifunctional nanocrystals for cancer therapy: a potential nanocarrier. In: Nanomaterials for drug delivery and therapy. Norwich (NY): William Andrew Publishing; 2019. p. 91–116.
  • Di Francesco M, Celia C, Primavera R, et al. Physicochemical characterization of pH-responsive and fusogenic self-assembled non-phospholipid vesicles for a potential multiple targeting therapy. Int J Pharm. 2017; 2017/08/07/528(1-2):18–32.
  • Zhang Y, Yang M, Portney NG, et al. Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices. 2008;10(2):321–328.
  • Das SK, Dey T, Kundu SC. Fabrication of sericin nanoparticles for controlled gene delivery. RSC Adv. 2014;4(5):2137–2142.
  • Sadri H, Aghaei M, Akbari V. Nisin induces apoptosis in cervical cancer cells via reactive oxygen species generation and mitochondrial membrane potential changes. Biochem Cell Biol. 2022;100(2):136–141.
  • Karpiński TM, Adamczak A. Anticancer activity of bacterial proteins and peptides. Pharmaceutics. 2018;10(2):54.
  • Mohamadi N, Kazemi SM, Mohammadian M, et al. Toxicity of cisplatin-loaded poly butyl cyanoacrylate nanoparticles in a brain cancer cell line: anionic polymerization results. Asian Pac J Cancer Prev. 2017; Mar 118(3):629–632.
  • Taebpour M, Arasteh F, Akhlaghi M, et al. Fabrication and characterization of PLGA polymeric nanoparticles containing berberine and its cytotoxicity on breast cancer cell (MCF-7). Nanomed Res J. 2021;6(4):396–408.
  • Yallapu MM, Gupta BK, Jaggi M, et al. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351(1):19–29.
  • Nassir AM, Shahzad N, Ibrahim IAA, et al. Resveratrol-loaded PLGA nanoparticles mediated programmed cell death in prostate cancer cells. Saudi Pharm J. 2018;26(6):876–885.
  • Lewies A, Wentzel JF, Miller HC, et al. The antimicrobial peptide nisin Z induces selective toxicity and apoptotic cell death in cultured melanoma cells. Biochimie. 2018;144:28–40.
  • Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis. 2003;8(2):115–128.
  • Wang Y, Wu C, Zhang Q, et al. Design, synthesis and biological evaluation of novel beta-pinene-based thiazole derivatives as potential anticancer agents via mitochondrial-mediated apoptosis pathway. Bioorg Chem. 2019;84:468–477.
  • Hetz C, Bono MR, Barros LF, et al. Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2696–701.
  • Fesik, S. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer. 2005;5:876–885.
  • Pfeffer, CM Singh AT K. Apoptosis: A Target for Anticancer Therapy. Int J Mol Sci. 2018 Feb 2;19(2):448.
  • Ahmadi S, Ghollasi M, Hosseini HM. The apoptotic impact of nisin as a potent bacteriocin on the colon cancer cells. Microb Pathog. 2017;111:193–197.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.