89
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Sorafenib tosylate incorporation into mesoporous starch xerogel for in-situ micronization and oral bioavailability enhancement

, , , , , & show all
Pages 343-354 | Received 21 Nov 2021, Accepted 09 Aug 2022, Published online: 06 Sep 2022

References

  • Ranieri G, Gadaleta-Caldarola G, Goffredo V, et al. Sorafenib (Bay 43-9006) in hepatocellular carcinoma patients: from discovery to clinical development. Curr Med Chem. 2012;19(7):938–944.
  • Wang XQ, Fan JM, Liu YO, et al. Bioavailability and pharmacokinetics of sorafenib suspension, nanoparticles and nanomatrix for oral administration to rat. Int J Pharm. 2011;419(1–2):339–346.
  • Blanchet B, Billemont B, Cramard J, et al. Validation of an HPLC-UV method for sorafenib determination in human plasma and application to cancer patients in routine clinical practice. J Pharm Biomed Anal. 2009;49(4):1109–1114.
  • Di Gion P, Kanefendt F, Lindauer A, et al. Clinical pharmacokinetics of tyrosine kinase inhibitors. Clin Pharmacokinet. 2011;50(9):551–603.
  • Ning X, Sun J, Han X, et al. Strategies to improve dissolution and oral absorption of glimepiride tablets: solid dispersion versus micronization techniques. Drug Dev Ind Pharm. 2011;37(6):727–736.
  • Salmanpour M, Saeed-Vaghefi M, Abolmaali SS, et al. Sterically stabilized polyionic complex nanogels of chitosan lysate and PEG-b-polyglutamic acid copolymer for the delivery of irinotecan active metabolite (SN-38). Curr Drug Deliv. 2021;18(6):741–752.
  • Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:195727.
  • Vandana K, Raju YP, Chowdary VH, et al. An overview on in situ micronization technique–an emerging novel concept in advanced drug delivery. Saudi Pharm J. 2014;22(4):283–289.
  • Ghaderi R, Artursson P, Carlfors J. Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS). Pharm Res. 1999;16(5):676–681.
  • Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281–1302.
  • Wang B, Wang D, Zhao S, et al. Evaluate the ability of PVP to inhibit crystallization of amorphous solid dispersions by density functional theory and experimental verify. Eur J Pharm Sci. 2017;96:45–52.
  • Tiemann M. Porous metal oxides as gas sensors. Chemistry. 2007;13(30):8376–8388.
  • Wu C-D, Hu A, Zhang L, et al. A homochiral porous metal − organic framework for highly enantioselective heterogeneous asymmetric catalysis. J Am Chem Soc. 2005;127(25):8940–8941.
  • Jackson EA, Hillmyer MA. Nanoporous membranes derived from block copolymers: from drug delivery to water filtration. ACS Nano. 2010;4(7):3548–3553.
  • Gershow M, Golovchenko JA. Recapturing and trapping single molecules with a solid-state nanopore. Nat Nanotechnol. 2007;2(12):775–779.
  • Sing KSW, Everett DH, Haul RAW, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem. 1985;57(4):603–619.
  • Wu D, Xu F, Sun B, et al. Design and preparation of porous polymers. Chem Rev. 2012;112(7):3959–4015.
  • Lin D-R, Hu L-J, Xing B-S, et al. Mechanisms of competitive adsorption organic pollutants on hexylene-bridged polysilsesquioxane. Materials. 2015;8(9):5806–5817.
  • Tsai S-W, Chang Y-H, Yu J-L, et al. Preparation of nanofibrous structure of mesoporous bioactive glass microbeads for biomedical applications. Materials. 2016;9(6):487.
  • Lai J, Lin W, Scholes P, et al. Investigating the effects of loading factors on the in vitro pharmaceutical performance of mesoporous materials as drug carriers for ibuprofen. Materials. 2017;10(2):150.
  • Setyawati MI, Leong DT. Mesoporous silica nanoparticles as an antitumoral-angiogenesis strategy. ACS Appl Mater Interfaces. 2017;9(8):6690–6703.
  • Naik B, Ghosh NN. A review on chemical methodologies for preparation of mesoporous silica and alumina based materials. Recent Pat Nanotechnol. 2009;3(3):213–224.
  • Li XY, Chen LH, Rooke JC, et al. Mesoporous titanium dioxide (TiO2) with hierarchically 3D dendrimeric architectures: formation mechanism and highly enhanced photocatalytic activity. J Colloid Interface Sci. 2013;394:252–262.
  • Wu SH, Mou CY, Lin HP. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev. 2013;42(9):3862–3875.
  • White RJ, Budarin V, Luque R, et al. Tuneable porous carbonaceous materials from renewable resources. Chem Soc Rev. 2009;38(12):3401–3418.
  • Calvert P. Biopolymers: the structure of starch. Nature. 1997;389(6649):338–339.
  • Budarin V, Clark JH, Hardy JJE, et al. Starbons: new starch-derived mesoporous carbonaceous materials with tunable properties. Angew Chem. 2006;118(23):3866–3870.
  • Parker HL, Hunt AJ, Budarin VL, et al. The importance of being porous: polysaccharide-derived mesoporous materials for use in dye adsorption. RSC Adv. 2012;2(24):8992–8997.
  • Wu C, Wang Z, Zhi Z, et al. Development of biodegradable porous starch foam for improving oral delivery of poorly water soluble drugs. Int J Pharm. 2011;403(1–2):162–169.
  • Ali MT, Fule R, Sav A, et al. Porous starch: a novel carrier for solubility enhancement of carbamazepine. AAPS PharmSciTech. 2013;14(3):919–926.
  • Browne E, Worku ZA, Healy AM. Physicochemical properties of poly-vinyl polymers and their influence on ketoprofen amorphous solid dispersion performance: a polymer selection case study. Pharmaceutics. 2020;12(5):433
  • Urpayil S. Thermal and spectroscopic studies on Nizatidine-PVP mixture. iosrphr. 2012;2(6):17–23.
  • Shpigelman A, Israeli G, Livney YD. Thermally-induced protein–polyphenol co-assemblies: beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG. Food Hydrocolloids. 2010;24(8):735–743.
  • Soleimanpour M, Tamaddon AM, Kadivar M, et al. Fabrication of nanostructured mesoporous starch encapsulating soy-derived phytoestrogen (genistein) by well-tuned solvent exchange method. Int J Biol Macromol. 2020;159:1031–1047.
  • Kecili R, Hussain CM. Chapter 4 - Mechanism of adsorption on nanomaterials. In Hussain CM, editor. Nanomaterials in chromatography. Elsevier; New Jersey: New Jersey Institute of Technology; 2018. p. 89–115.
  • Dada, A.O, Olalekan, A.P, Olatunya, A.M., Dada, O. Langmuir, freundlich, temkin and dubinin–radushkevich isotherms studies of equilibrium sorption of Zn 2+ unto phosphoric acid modified rice husk. J Appl Chem. 2012;3:38–45.
  • El Maataoui Y, EL M'RABET M, Maaroufi A, et al. Adsorption isotherm modeling of carbendazim and flumetsulam onto homoionic-montmorillonite clays: comparison of linear and nonlinear models. Turk J Chem. 2017;41(4):514–524.
  • Girish C. Various isotherm models for multicomponent adsorption: a review. Int J Civ Eng Technol. 2017;8(10):80–86.
  • Ayawei N, Ebelegi AN, Wankasi D. Modelling and interpretation of adsorption isotherms. J Chem. 2017;2017:1–11.
  • Bardestani R, Patience GS, Kaliaguine S. Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can J Chem Eng. 2019;97(11):2781–2791.
  • Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60(2):309–319.
  • Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc. 1951;73(1):373–380.
  • Shi Y, Gao P, Gong Y, et al. Application of a biphasic test for characterization of in vitro drug release of immediate release formulations of celecoxib and its relevance to in vivo absorption. Mol Pharm. 2010;7(5):1458–1465.
  • Monajati M, Tavakoli S, Abolmaali SS, et al. Effect of PEGylation on assembly morphology and cellular uptake of poly ethyleneimine-cholesterol conjugates for delivery of sorafenib tosylate in hepatocellular carcinoma. Bioimpacts. 2018;8(4):241–252.
  • Druel L, Bardl R, Vorwerg W, et al. Starch aerogels: a member of the family of thermal superinsulating materials. Biomacromolecules. 2017;18(12):4232–4239.
  • Mehling T, Smirnova I, Guenther U, et al. Polysaccharide-based aerogels as drug carriers. J Non-Cryst Solids. 2009;355(50-51):2472–2479.
  • Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6(2):105–121
  • García-González CA, Smirnova I. Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J Supercrit Fluid. 2013;79:152–158.
  • Gao F, Li D, Bi C-h, et al. Application of various drying methods to produce enzymatically hydrolyzed porous starch granules. Drying Technol. 2013;31(13–14):1627–1634.
  • Bisson A, Rigacci A, Lecomte D, et al. Drying of silica gels to obtain aerogels: phenomenology and basic techniques. Drying Technol. 2003;21(4):593–628.
  • Baudron V, Gurikov P, Smirnova I, et al. Porous starch materials via supercritical- and freeze-drying. Gels. 2019;5(1):12.
  • Abedi M, Abolmaali SS, Abedanzadeh M, et al. Citric acid functionalized silane coupling versus post-grafting strategy for dual pH and saline responsive delivery of cisplatin by Fe3O4/carboxyl functionalized mesoporous SiO2 hybrid nanoparticles: a-synthesis, physicochemical and biological characterization. Mater Sci Eng C Mater Biol Appl. 2019;104:109922.
  • Sriamornsak P, Nunthanid J, Cheewatanakornkool K, et al. Effect of drug loading method on drug content and drug release from calcium pectinate gel beads. AAPS PharmSciTech. 2010;11(3):1315–1319.
  • Preisig D, Haid D, Varum FJO, et al. Drug loading into porous calcium carbonate microparticles by solvent evaporation. Eur J Pharm Biopharm. 2014;87(3):548–558.
  • Syazaliyana Azali N, Hidayatul Nazirah Kamarudin N, Adira Jaafar J, et al. Modification of mesoporous silica nanoparticles with pH responsive polymer poly (2-vinylpyrrolidone) for the release of 5-florouracil. Mater Today: Proc. 2020;31:A12–A17.
  • Dehghani MH, Tajik S, Panahi A, et al. Adsorptive removal of noxious cadmium from aqueous solutions using poly urea-formaldehyde: a novel polymer adsorbent. MethodsX. 2018;5:1148–1155.
  • Anah L, Astrini N, editors. Isotherm adsorption studies of Ni(II) ion removal from aqueous solutions by modified carboxymethyl cellulose hydrogel. IOP Conference Series: Earth and Environmental Science. UK: Bristol BS1 6HG; 2018. 160: p. 012017.
  • Mohammadi A, Moghaddas J. Mesoporous starch aerogels production as drug delivery matrices: synthesis optimization, ibuprofen loading, and release property. Turk J Chem. 2020;44(3):614–633.
  • García-González CA, Alnaief M, Smirnova I. Polysaccharide-based aerogels – promising biodegradable carriers for drug delivery systems – review article. Carbohydr Polym. 2011;86(4):1425–1438.
  • Yang Y, Lan G, Wang X, et al. Direct synthesis of nitrogen-doped mesoporous carbons for acetylene hydrochlorination. Chin J Catal. 2016;37(8):1242–1248.
  • Alvarado N, Urdaneta J, Figueroa JRR, et al. Improvement of Physicochemical Properties of Starch Films by Blending it with Poly(N-Vinyl-2-Pyrrolidone). J Food Sci Nut 2018;4:036.
  • Paradkar A, Ambike AA, Jadhav BK, et al. Characterization of curcumin–PVP solid dispersion obtained by spray drying. Int J Pharm. 2004;271(1-2):281–286.
  • Sethia S, Squillante E. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm. 2004;272(1-2):1–10.
  • Konno H, Handa T, Alonzo DE, et al. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Biopharm. 2008;70(2):493–499.
  • Chavan RB, Thipparaboina R, Kumar D, et al. Evaluation of the inhibitory potential of HPMC, PVP and HPC polymers on nucleation and crystal growth. RSC Adv. 2016;6(81):77569–77576.
  • Xu S, Dai W-G. Drug precipitation inhibitors in supersaturable formulations. Int J Pharm. 2013;453(1):36–43.
  • Skwira A, Szewczyk A, Prokopowicz M. The effect of polydimethylsiloxane-ethylcellulose coating blends on the surface characterization and drug release of ciprofloxacin-loaded mesoporous silica. Polymers. 2019;11(9):1450.
  • Li H, Yu H, Zhu C, et al. Cisplatin and doxorubicin dual-loaded mesoporous silica nanoparticles for controlled drug delivery. RSC Adv. 2016;6(96):94160–94169.
  • Mutalik S, Anju P, Manoj K, et al. Enhancement of dissolution rate and bioavailability of aceclofenac: a chitosan-based solvent change approach. Int J Pharm. 2008;350(1–2):279–290.
  • Yang P, Qin C, Du S, et al. Crystal structure, stability and desolvation of the solvates of sorafenib tosylate. Crystals. 2019;9(7):367.
  • Shi Y, Erickson B, Jayasankar A, et al. Assessing supersaturation and its impact on in vivo bioavailability of a low-solubility compound ABT-072 with a dual pH, two-phase dissolution method. J Pharm Sci. 2016;105(9):2886–2895.
  • Phillips J, Pygall D, Cooper S, et al. Overcoming sink limitations in dissolution testing: a review of traditional methods and the potential utility of biphasic systems. J Pharm Pharmacol. 2012;64:1549–1559.
  • Juère E, Kleitz F. On the nanopore confinement of therapeutic drugs into mesoporous silica materials and its implications. Microporous Mesoporous Mater. 2018;270:109–119.
  • Bai A, Wu C, Liu X, et al. Development of a tin oxide carrier with mesoporous structure for improving the dissolution rate and oral relative bioavailability of fenofibrate. Drug Des Devel Ther. 2018;12:2129–2138.
  • Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23–24):1068–1075.
  • Simonelli AP, Mehta SC, Higuchi WI. Dissolution rates of high energy polyvinylpyrrolidone (PVP)-sulfathiazole coprecipitates. J Pharm Sci. 1969;58(5):538–549.
  • Kearney AS, Gabriel DL, Mehta SC, et al. Effect of polyvinylpyrrolidone on the crystallinity and dissolution rate of solid dispersions of the antiinflammatory CI-987. Int J Pharm. 1994;104(2):169–174.
  • Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.
  • Siepmann J, Peppas NA. Higuchi equation: derivation, applications, use and misuse. Int J Pharm. 2011;418(1):6–12.
  • Lai J-S, Chiang C-h, Wu T-H. Release kinetics of indomethacin from polymeric matrices. Drug Dev Ind Pharm. 1987;13(8):1399–1408.
  • Petropoulos JH, Papadokostaki KG, Sanopoulou M. Higuchi's equation and beyond: overview of the formulation and application of a generalized model of drug release from polymeric matrices. Int J Pharm. 2012;437(1–2):178–191.
  • Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci. 2015;125:75–84.
  • Ali IH, Khalil IA, El-Sherbiny IM. Single-dose electrospun nanoparticles-in-nanofibers wound dressings with enhanced epithelialization, collagen deposition, and granulation properties. ACS Appl Mater Interfaces. 2016;8(23):14453–14469.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.