171
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Ameliorating the antitumor activity of gemcitabine against breast tumor using αvβ3 integrin-targeting lipid nanoparticles

, , , , , & show all
Pages 384-396 | Received 10 Dec 2021, Accepted 29 Aug 2022, Published online: 12 Sep 2022

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249.
  • Sandoval MA, Sloat BR, Lansakara-P DSP, et al. EGFR-targeted stearoyl gemcitabine nanoparticles show enhanced anti-tumor activity. J Control Release. 2012;157(2):287–296.
  • Zakeri-Milani P, Farkhani M, Shirani S, et al. Cellular uptake and anti-tumor activity of gemcitabine conjugated with new amphiphilic cell penetrating peptides. Excli J. 2017;16:650–662.
  • Hamzian N, Hashemi M, Ghorbani M, et al. Preparation, optimization and toxicity evaluation of (SPION-PLGA) ± PEG nanoparticles loaded with gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications. Iran J Pharm Res. 2017;16(1):8–21.
  • Dyawanapelly S, Kumar A, Chourasia MK. Lessons learned from gemcitabine: Impact of therapeutic carrier systems and gemcitabine’s drug conjugates on cancer therapy. Crit Rev Ther Drug Carrier Syst. 2017;34(1):63–96.
  • Arya G, Vandana M, Acharya S, et al. Enhanced antiproliferative activity of herceptin (HER2)-conjugated gemcitabine-loaded chitosan nanoparticle in pancreatic cancer therapy. Nanomedicine. 2011;7(6):859–870.
  • Jia Y, Xie J. Promising molecular mechanisms responsible for gemcitabine resistance in cancer. Genes Dis. 2015;2(4):299–306.
  • Mukhopadhyay R, Sen R, Paul B, et al. Gemcitabine co-encapsulated with curcumin in folate decorated PLGA nanoparticles; a novel approach to treat breast adenocarcinoma. Pharm Res. 2020;37(3):56.
  • Jangid AK, Pooja D, Jain P, et al. A nanoscale, biocompatible and amphiphilic prodrug of cabazitaxel with improved anticancer efficacy against 3D spheroids of prostate cancer cells. Mater Adv. 2020;1(4):738–748.
  • Devi L, Gupta R, Jain SK, et al. Synthesis, characterization and in vitro assessment of colloidal gold nanoparticles of gemcitabine with natural polysaccharides for treatment of breast cancer. J Drug Deliv Sci Technol. 2020;56:101565.
  • Weibo C, Xiaoyuan C. Anti-angiogenic cancer therapy based on integrin αvβ3 antagonism. Anticancer Agents Med Chem. 2006;6(5):407–428.
  • Kantlehner M, Finsinger D, Meyer J, et al. Selective RGD-mediated adhesion of osteoblasts at surfaces of implants. Angew Chem Int Ed. 1999;38(4):560–562.
  • Kulhari H, Pooja D, Kota R, et al. Cyclic RGDfK peptide functionalized polymeric nanocarriers for targeting gemcitabine to ovarian cancer cells. Mol Pharm. 2016;13(5):1491–1500.
  • Han H, Hou Y, Chen X, et al. Metformin-induced stromal depletion to enhance the penetration of gemcitabine-loaded magnetic nanoparticles for pancreatic cancer targeted therapy. J Am Chem Soc. 2020;142(10):4944–4954.
  • Tang J, Zheng F, Zhao J, et al. Self-assembled multifunctional nanotheranostics loading GEM for targeted lung cancer therapy. Mater Sci Eng C Mater Biol Appl. 2020;112:110786.
  • Kulhari H, Pooja D, Shrivastava S, et al. Cyclic-RGDfK peptide conjugated succinoyl-TPGS nanomicelles for targeted delivery of docetaxel to integrin receptor over-expressing angiogenic tumours. Nanomedicine. 2015;11(6):1511–1520.
  • Trédan O, Galmarini CM, Patel K, et al. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99(19):1441–1454.
  • Tao X-M, Wang J-c, Wang J-B, et al. Enhanced anticancer activity of gemcitabine coupling with conjugated linoleic acid against human breast cancer in vitro and in vivo. Eur J Pharm Biopharm. 2012;82(2):401–409.
  • Hodge LS, Taub ME, Tracy TS. Effect of its deaminated metabolite, 2′,2′-difluorodeoxyuridine, on the transport and toxicity of gemcitabine in HeLa cells. Biochem Pharmacol. 2011;81(7):950–956.
  • Pooja D, Tunki L, Kulhari H, et al. Optimization of solid lipid nanoparticles prepared by a single emulsification-solvent evaporation method. Data Brief. 2016;6:15–19.
  • Yuan H, Chen C-Y, Chai G-h, et al. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles. Mol Pharm. 2013;10(5):1865–1873.
  • Giri TK, Choudhary C, Alexander A, et al. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery. Saudi Pharm J. 2013;21(2):125–141.
  • Pooja D, Kulhari H, Kuncha M, et al. Improving efficacy, oral bioavailability, and delivery of paclitaxel using protein-grafted solid lipid nanoparticles. Mol Pharm. 2016;13(11):3903–3912.
  • Pooja D, Tunki L, Kulhari H, et al. Characterization, biorecognitive activity and stability of WGA grafted lipid nanostructures for the controlled delivery of rifampicin. Chem Phys Lipids. 2015;193:11–17.
  • Edmondson JM, Armstrong LS, Martinez AO. A rapid and simple MTT-based spectrophotometric assay for determining drug sensitivity in monolayer cultures. J Tissue Cult Methods. 1988;11(1):15–17.
  • Houdaihed L, Evans JC, Allen C. Codelivery of paclitaxel and everolimus at the optimal synergistic ratio: a promising solution for the treatment of breast cancer. Mol Pharm. 2018;15(9):3672–3681.
  • Tunki L, Kulhari H, Vadithe LN, et al. Modulating the site-specific oral delivery of sorafenib using sugar-grafted nanoparticles for hepatocellular carcinoma treatment. Eur J Pharm Sci. 2019;137:104978.
  • Reddy TS, Privér SH, Mirzadeh N, et al. Synthesis of gold(I) phosphine complexes containing the 2-BrC6F4PPh2 ligand: Evaluation of anticancer activity in 2D and 3D spheroidal models of HeLa cancer cells. Eur J Med Chem. 2018;145:291–301.
  • Reddy TS, Kulhari H, Reddy VG, et al. Design, synthesis and biological evaluation of 1,3-diphenyl-1H-pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis inducing agents. Eur J Med Chem. 2015;101:790–805.
  • Srinivasa Reddy T, Privér SH, Mirzadeh N, et al. Antitumor and antiangiogenic properties of gold(III) complexes containing cycloaurated triphenylphosphine sulfide ligands. Inorg Chem. 2020;59(8):5662–5673.
  • Wang J, Zhang X, Li X, et al. Anti-gastric cancer activity in three-dimensional tumor spheroids of bufadienolides. Sci Rep. 2016;6:24772–24772.
  • Tunki L, Jangid AK, Pooja D, et al. Serotonin-functionalized Vit-E nanomicelles for targeting of irinotecan to prostate cancer cells. ACS Appl Bio Mater. 2020;3(8):5093–5102.
  • Kim EJ, Choi M-R, Park H, et al. Dietary fat increases solid tumor growth and metastasis of 4T1 murine mammary carcinoma cells and mortality in obesity-resistant BALB/c mice. Breast Cancer Res. 2011;13(4):R78.
  • Lei M, Sha S, Wang X, et al. Co-delivery of paclitaxel and gemcitabine via a self-assembling nanoparticle for targeted treatment of breast cancer. RSC Adv. 2019;9(10):5512–5520.
  • Pistel KF, Kissel T. Effects of salt addition on the microencapsulation of proteins using W/O/W double emulsion technique. J Microencapsul. 2000;17(4):467–483.
  • Karamchedu S, Tunki L, Kulhari H, et al. Morin hydrate loaded solid lipid nanoparticles: characterization, stability, anticancer activity, and bioavailability. Chem Phys Lipids. 2020;233:104988.
  • Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995;55(17):3752–3756.
  • Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res. 2008;25(8):1815–1821.
  • Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011;17(11):1359–1370.
  • Liu P, Qin L, Wang Q, et al. cRGD-functionalized mPEG-PLGA-PLL nanoparticles for imaging and therapy of breast cancer. Biomaterials. 2012;33(28):6739–6747.
  • Liu Y, Hui Y, Ran R, et al. Synergetic combinations of dual‐targeting ligands for enhanced in vitro and in vivo tumor targeting. Adv Healthcare Mater. 2018;7(15):1800106.
  • Yu X, Di Y, Xie C, et al. An in vitro and in vivo study of gemcitabine-loaded albumin nanoparticles in a pancreatic cancer cell line. Int. J. Nanomedicine. 2015;10:6825–6834.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.