213
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Fabrication of pH responsive hydrogel blends of chondroitin sulfate/pluronic F-127 for the controlled release of ketorolac: its characterization and acute oral toxicity study

, , , , , , , , ORCID Icon, ORCID Icon, & show all
Pages 611-622 | Received 20 Feb 2022, Accepted 24 Oct 2022, Published online: 30 Nov 2022

References

  • Soares GA, de Castro AD, Cury BS, et al. Blends of cross-linked high amylose starch/pectin loaded with diclofenac. Carbohydr Polym. 2013;91(1):135–142.
  • Freiberg S, Zhu X. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282(1–2):1–18.
  • Barkat K, Ahmad M, Usman Minhas M, et al. Development and characterization of pH‐responsive polyethylene glycol‐co‐poly(methacrylic acid) polymeric network system for colon target delivery of oxaliplatin: its acute oral toxicity study. Adv Polym Technol. 2018;37(6):1806–1822.
  • Sastry SV, Nyshadham JR, Fix JA. Recent technological advances in oral drug delivery – a review. Pharm Sci Technol Today. 2000;3(4):138–145.
  • Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001;53(3):321–339.
  • Soares PA, de Seixas JRC, Albuquerque PB, et al. Development and characterization of a new hydrogel based on galactomannan and κ-carrageenan. Carbohydr Polym. 2015;134:673–679.
  • Anwar H, Ahmad M, Minhas MU, et al. Alginate-polyvinyl alcohol based interpenetrating polymer network for prolonged drug therapy, optimization and in-vitro characterization. Carbohydr Polym. 2017;166:183–194.
  • Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6(2):105–121.
  • Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002;7(10):569–579.
  • Khan S, Ullah A, Ullah K, et al. Insight into hydrogels. Des Monomers Polym. 2016;19(5):456–478.
  • Ullah F, Othman MBH, Javed F, et al. Classification, processing and application of hydrogels: a review. Mater Sci Eng C Mater Biol Appl. 2015;57:414–433.
  • Sohail M, Ahmad M, Minhas MU, et al. Synthesis and characterization of graft PVA composites for controlled delivery of valsartan. Lat Am J Pharm. 2014;33:1237–1244.
  • Rizwan M, Yahya R, Hassan A, et al. pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications. Polymers. 2017;9(12):137.
  • Rubinstein A, Nakar D, Sintov A. Chondroitin sulfate: a potential biodegradable carrier for colon-specific drug delivery. Int J Pharm. 1992;84(2):141–150.
  • Morris JD. Chondroitin sulfate in osteoarthritis therapy. Orthopedics. 2009;32.
  • Wang D-A, Varghese S, Sharma B, et al. Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nat Mater. 2007;6(5):385–392.
  • Bishnoi M, Jain A, Hurkat P, et al. Aceclofenac-loaded chondroitin sulfate conjugated SLNs for effective management of osteoarthritis. J Drug Target. 2014;22(9):805–812.
  • Onishi H, Yoshida R, Matsuyama M. Chondroitin sulfate– glycyl-prednisolone conjugate as arthritis targeting system: localization and drug release in inflammatory joints. Biol Pharm Bull. 2014;37(10):1641–1649.
  • Elliott JE, Macdonald M, Nie J, et al. Structure and swelling of poly(acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer. 2004;45(5):1503–1510.
  • Escobar-Chávez J, López-Cervantes M, Naik A, et al. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci. 2006;9(3):339–358.
  • Baskan T, Tuncaboylu DC, Okay O. Tough interpenetrating Pluronic F127/polyacrylic acid hydrogels. Polymer. 2013;54(12):2979–2987.
  • Zhao S, Cao M, Wu J, et al. Synthesis and characterization of biodegradable thermo- and pH-sensitive hydrogels based on Pluronic F127/poly(ε-caprolactone) macromer and acrylic acid. Macromol Res. 2009;17(12):1025–1031.
  • Yuan Xiong X, Chiu Tam K, Huat Gan L. Synthesis and thermally responsive properties of novel pluronic F87/polycaprolactone (PCL) block copolymers with short PCL blocks. J Appl Polym Sci. 2006;100(5):4163–4172.
  • Abdeltawab H, Svirskis D, Boyd BJ, et al. Injectable thermoresponsive gels offer sustained dual release of bupivacaine hydrochloride and ketorolac tromethamine for up to two weeks. Int J Pharm. 2021;604:120748.
  • Suhail M, Liu J-Y, Hsieh W-C, et al. Designing of pH-responsive ketorolac tromethamine loaded hydrogels of alginic acid: characterization, in-vitro and in-vivo evaluation. Arab J Chem. 2022;15(2):103590.
  • Zhao Z, Bai Y, Sun J, et al. Tough and self‐healing hydrophobic association hydrogels with cationic surfactant. J Appl Polym Sci. 2021;138(27):50645.
  • Elgueta E, Rivas BL, Mancisidor A, et al. Hydrogels derived from 2-hydroxyethyl-methacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid, with ability to remove metal cations from wastewater. Polym Bull. 2019;76(12):6503–6528.
  • Barkat K, Ahmad M, Minhas MU, et al. Oxaliplatin‐loaded crosslinked polymeric network of chondroitin sulfate‐co‐poly(methacrylic acid) for colorectal cancer: its toxicological evaluation. J Appl Polym Sci. 2017;134(38):45312.
  • Paarakh MP, Jose PA, Setty C, et al. Release kinetics – concepts and applications. Int J Pharm Res Technol. 2018;8:12–20.
  • Hayashi T, Kanbe H, Okada M, et al. Formulation study and drug release mechanism of a new theophylline sustained-release preparation. Int J Pharm. 2005;304(1–2):91–101.
  • Barkat K, Ahmad M, Minhas MU, et al. Chondroitin sulfate-based smart hydrogels for targeted delivery of oxaliplatin in colorectal cancer: preparation, characterization and toxicity evaluation. Polym Bull. 2020;77(12):6271–6297.
  • Khalid I, Ahmad M, Minhas MU, et al. Synthesis and evaluation of chondroitin sulfate based hydrogels of loxoprofen with adjustable properties as controlled release carriers. Carbohydr Polym. 2018;181:1169–1179.
  • Badshah SF, Akhtar N, Minhas MU, et al. Porous and highly responsive cross-linked β-cyclodextrin based nanomatrices for improvement in drug dissolution and absorption. Life Sci. 2021;267:118931.
  • Crispim E, Piai J, Fajardo A, et al. Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: preparation and characterization. Express Polym Lett. 2012;6:383–395.
  • Al Kayal T, Panetta D, Canciani B, et al. Evaluation of the effect of a gamma irradiated DBM-Pluronic F127 composite on bone regeneration in Wistar rat. PLOS One. 2015;10(4):e0125110.
  • Karolewicz B, Gajda M, Owczarek A, et al. Physicochemical characterization and dissolution studies of solid dispersions of clotrimazole with Pluronic F127. Trop J Pharm Res. 2014;13(8):1225–1232.
  • Wang L, Wang Z, Zhang X, et al. A new approach for the fabrication of an alternating multilayer film of poly(4‐vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromol Rapid Commun. 1997;18(6):509–514.
  • Sandhya P, Tazyeen N, Sunitha M, et al. Formulation and evaluation of buccal films of ketorolac tromethamine. J Glob Trends Pharm Sci. 2013;4:1184–1192.
  • Fajardo AR, Silva MB, Lopes LC, et al. Hydrogel based on an alginate–Ca2+/chondroitin sulfate matrix as a potential colon-specific drug delivery system. RSC Adv. 2012;2(29):11095–11103.
  • Jin J, Mitome T, Egashira Y, et al. Phase control of ordered mesoporous carbon synthesized by a soft-templating method. Colloids Surf A Physicochem Eng Asp. 2011;384(1–3):58–61.
  • Nasir N, Ahmad M, Minhas MU, et al. pH-responsive smart gels of block copolymer [Pluronic F127-co-poly(acrylic acid)] for controlled delivery of ivabradine hydrochloride: its toxicological evaluation. J Polym Res. 2019;26(9):1–15.
  • Gorniak A, Karolewicz B, Czapor-Irzabek H, et al. A physicochemical and dissolution study of ketoconazole-Pluronic F127 solid dispersions. Farmacia. 2016;64:244–251.
  • Mandal B, Ray SK. Synthesis of interpenetrating network hydrogel from poly(acrylic acid-co-hydroxyethyl methacrylate) and sodium alginate: modeling and kinetics study for removal of synthetic dyes from water. Carbohydr Polym. 2013;98(1):257–269.
  • Mawad D, Foster JL, Lauto A. Drug-delivery study and estimation of polymer–solvent interaction parameter for bisacrylate ester-modified pluronic hydrogels. Int J Pharm. 2008;360(1–2):231–235.
  • Xiong X, Tam K, Gan L. Polymeric nanostructures for drug delivery applications based on pluronic copolymer systems. J Nanosci Nanotechnol. 2006;6(9–10):2638–2650.
  • Gupta I, Tomar RS, Nagpal A, et al. A study on effect of acrylic acid content on swelling behavior of poly(AAm‐co‐BMA‐co‐AAc) hydrogels. J Macromol Sci A Pure Appl Chem. 2007;44(4):403–412.
  • Sohail K, Khan IU, Shahzad Y, et al. pH-sensitive polyvinylpyrrolidone–acrylic acid hydrogels: impact of material parameters on swelling and drug release. Braz J Pharm Sci. 2014;50(1):173–184.
  • Ashri A, Lazim A. A study on the effect of the concentration of N,N-methylenebisacrylamide and acrylic acid toward the properties of Dioscorea hispida-starch-based hydrogel. In: AIP Conference Proceedings; 2014. p. 251–255. American Institute of Physics.
  • Lowman AM, Peppas NA. Hydrogels. Encyclopedia of controlled drug delivery. Wiley. New York. Vol. 1; 1999. p. 397–418.
  • Varghese JM, Ismail YA, Lee CK, et al. Thermoresponsive hydrogels based on poly(N-isopropylacrylamide)/chondroitin sulfate. Sens Actuators B Chem. 2008;135(1):336–341.
  • Ali L, Ahmad M, Usman M, et al. Controlled release of highly water-soluble antidepressant from hybrid copolymer poly vinyl alcohol hydrogels. Polym Bull. 2014;71(1):31–46.
  • Khan S, Akhtar N, Minhas MU, et al. pH/thermo-dual responsive tunable in situ cross-linkable depot injectable hydrogels based on poly(N-isopropylacrylamide)/carboxymethyl chitosan with potential of controlled localized and systemic drug delivery. AAPS PharmSciTech. 2019;20(3):1–16.
  • Simão AR, Fragal VH, de Oliveira Lima AM, et al. pH-responsive hybrid hydrogels: chondroitin sulfate/casein trapped silica nanospheres for controlled drug release. Int J Biol Macromol. 2020;148:302–315.
  • Mahmood A, Ahmad M, Sarfraz RM, et al. β-CD based hydrogel microparticulate system to improve the solubility of acyclovir: optimization through in-vitro, in-vivo and toxicological evaluation. J Drug Deliv Sci Technol. 2016;36:75–88.
  • Erum A, Bashir S, Saghir S. Modified and unmodified arabinoxylans from Plantago ovata husk: novel excipients with antimicrobial potential. Bangladesh J Pharmacol. 2015;10(4):765–769.
  • Khan KU, Akhtar N, Minhas MU. Poloxamer-407-Co-poly(2-acrylamido-2-methylpropane sulfonic acid) cross-linked nanogels for solubility enhancement of olanzapine: synthesis, characterization, and toxicity evaluation. AAPS PharmSciTech. 2020;21(5):141.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.