188
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Sirolimus-exuding core-shell nanofibers as an implantable carrier for breast cancer therapy: preparation, characterization, in vitro cell studies, and in vivo anti-tumor activity

, , , & ORCID Icon
Pages 694-707 | Received 27 Jun 2022, Accepted 14 Dec 2022, Published online: 17 Jan 2023

References

  • Lopes CM, Dourado A, Oliveira R. Phytotherapy and nutritional supplements on breast cancer. Biomed Res Int. 2017;2017:7207983.
  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA A Cancer J Clin. 2021;71(1):7–33.
  • Pan H, Gray R, Braybrooke J, et al. 20-Year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med. 2017;377(19):1836–1846.
  • Livshits Z, Rao RB, Smith SW. An approach to chemotherapy-associated toxicity. Emerg Med Clin North Am. 2014;32(1):167–203.
  • Belz JE, Kumar R, Baldwin P, et al. Sustained release talazoparib implants for localized treatment of BRCA1-deficient breast cancer. Theranostics. 2017;7(17):4340–4349.
  • Ahmed KK, Tamer MA, Ghareeb MM, et al. Recent advances in polymeric implants. AAPS PharmSciTech. 2019;20(7):300.
  • Leach DG, Young S, Hartgerink JD. Advances in immunotherapy delivery from implantable and injectable biomaterials. Acta Biomater. 2019;88:15–31.
  • Michalik T, Matkowski R, Biecek P, et al. Ultralow anterior resection with implantation of gentamicin-collagen sponge and no defunctioning stoma: anastomotic leakage and local cancer relapse. Radiol Oncol. 2019;53(1):77–84.
  • Sonvico F, Barbieri S, Colombo P, et al. Combined hyaluronate-based films loaded with pemetrexed and cisplatin for the treatment of malignant pleural mesothelioma: preliminary evaluation in an orthotopic tumor recurrence model. Eur J Pharm Sci. 2018;123:89–97.
  • Puente P, Fettig N, Luderer MJ, et al. Injectable hydrogels for localized chemotherapy and radiotherapy in brain tumors. J Pharm Sci. 2018;107(3):922–933.
  • Shen H, Gao Q, Ye Q, et al. Peritumoral implantation of hydrogel-containing nanoparticles and losartan for enhanced nanoparticle penetration and antitumor effect. Int J Nanomed. 2018;13:7409–7426.
  • Irani M, Sadeghi GMM, Haririan I. The sustained delivery of temozolomide from electrospun PCL-Diol-b-PU/gold nanocompsite nanofibers to treat glioblastoma tumors. Mater Sci Eng C Mater Biol Appl. 2017;75:165–174.
  • Padmakumar S, Menon D. Nanofibrous polydioxanone depots for prolonged intraperitoneal paclitaxel delivery. Curr Drug Deliv. 2019;16(7):654–662.
  • Contreras-Cáceres R, Cabeza L, Perazzoli G, et al. Electrospun nanofibers: recent applications in drug delivery and cancer therapy. Nanomaterials. 2019;9(4):656.
  • Rasouli R, Barhoum A, Bechelany M, et al. Nanofibers for biomedical and healthcare applications. Macromol Biosci. 2019;19(2):e1800256.
  • Luo H, Jie T, Zheng L, et al. Electrospun nanofibers for cancer therapy. Adv Exp Med Biol. 2021;1295:163–190.
  • Kaplan JA, Liu R, Freedman JD, et al. Prevention of lung cancer recurrence using cisplatin-loaded superhydrophobic nanofiber meshes. Biomaterials. 2016;76:273–281.
  • Liu S, Wang X, Zhang Z, et al. Use of asymmetric multilayer polylactide nanofiber mats in controlled release of drugs and prevention of liver cancer recurrence after surgery in mice. Nanomedicine. 2015;11(5):1047–1056.
  • Pant B, Park M, Park SJ. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review. Pharmaceutics. 2019;11(7):305.
  • Yoon J, Yang HS, Lee BS, et al. Recent progress in coaxial electrospinning: new parameters, various structures, and wide applications. Adv Mater. 2018;30(42):e1704765.
  • Li J, Liu Y, Abdelhakim HE. Drug delivery applications of coaxial electrospun nanofibres in cancer therapy. Molecules. 2022;27(6):1803.
  • Chen X, Li H, Lu W, et al. Antibacterial porous coaxial drug-carrying nanofibers for sustained drug-releasing applications. Nanomaterials. 2021;11(5):1316.
  • Sultanova Z, Kaleli G, Kabay G, et al. Controlled release of a hydrophilic drug from coaxially electrospun polycaprolactone nanofibers. Int J Pharm. 2016;505(1-2):133–138.
  • Zupančič Š, Sinha-Ray S, Sinha-Ray S, et al. Controlled release of ciprofloxacin from core-shell nanofibers with monolithic or blended core. Mol Pharm. 2016;13(4):1393–1404.
  • Xu H, Xu X, Li S, et al. The effect of drug heterogeneous distributions within core-sheath nanostructures on its sustained release profiles. Biomolecules. 2021;11(9):1330.
  • Gu J, Yagi S, Meng J, et al. High-efficiency production of core-sheath nanofiber membrane via co-axial electro-centrifugal spinning for controlled drug release. J Membr Sci. 2022;654:120571.
  • Siddiqui N, Asawa S, Birru B, et al. PCL-Based composite scaffold matrices for tissue engineering applications. Mol Biotechnol. 2018;60(7):506–532.
  • Nejati-Koshki K, Pilehvar-Soltanahmadi Y, Alizadeh E, et al. Development of emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative medicine. Drug Dev Ind Pharm. 2017;43(12):1978–1988.
  • Haeri A, Osouli M, Bayat F, et al. Nanomedicine approaches for sirolimus delivery: a review of pharmaceutical properties and preclinical studies. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1–14.
  • Law BK. Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol Hematol. 2005;56(1):47–60.
  • Hare SH, Harvey AJ. mTOR function and therapeutic targeting in breast cancer. Am J Cancer Res. 2017;7(3):383–404.
  • Chaoul N, Fayolle C, Desrues B, et al. Rapamycin impairs antitumor CD8+ T-cell responses and vaccine-induced tumor eradication. Cancer Res. 2015;75(16):3279–3291.
  • Ohkawa K, Cha D, Kim H, et al. Electrospinning of chitosan. Macromol Rapid Commun. 2004;25(18):1600–1605.
  • Azouz L, Dahmoune F, Rezgui F, et al. Full factorial design optimization of anti-inflammatory drug release by PCL-PEG-PCL microspheres. Mater Sci Eng C Mater Biol Appl. 2016;58:412–419.
  • Tavares MR, Menezes L, Dutra Filho JC, et al. Surface-coated polycaprolactone nanoparticles with pharmaceutical application: structural and molecular mobility evaluation by TD-NMR. Polym Test. 2017;60:39–48.
  • França D, Medina ÂF, Messa LL, et al. Chitosan spray-dried microcapsule and microsphere as fertilizer host for swellable - controlled release materials. Carbohydr Polym. 2018;196:47–55.
  • Liu DQ, Cheng ZQ, Feng QJ, et al. Polycaprolactone nanofibres loaded with 20(S)-protopanaxadiol for in vitro and in vivo anti-tumour activity study. R Soc Open Sci. 2018;5(5):180137.
  • Hassan MI, Sultana N. Characterization, drug loading and antibacterial activity of nanohydroxyapatite/polycaprolactone (nHA/PCL) electrospun membrane. 3 Biotech. 2017;7(4):249.
  • Falamarzpour P, Behzad T, Zamani A. Preparation of nanocellulose reinforced chitosan films, cross-linked by adipic acid. IJMS. 2017;18(2):396.
  • Kumar D, Pandey J, Kumar P. Synthesis and characterization of modified chitosan via microwave route for novel antibacterial application. Int J Biol Macromol. 2018;107(Pt B):1388–1394.
  • Devi N, Dutta J. Preparation and characterization of chitosan-bentonite nanocomposite films for wound healing application. Int J Biol Macromol. 2017;104(Pt B):1897–1904.
  • Rasib SZM, Ahmad Z, Khan A, et al. Synthesis and evaluation on pH- and temperature-responsive chitosan-p(MAA-co-NIPAM) hydrogels. Int J Biol Macromol. 2018;108:367–375.
  • Kajdič S, Planinšek O, Gašperlin M, et al. Electrospun nanofibers for customized drug-delivery systems. J Drug Delivery Sci Technol. 2019;51:672–681.
  • Han D, Sasaki M, Yoshino H, et al. In-vitro evaluation of MPA-loaded electrospun coaxial fiber membranes for local treatment of glioblastoma tumor cells. J Drug Delivery Sci Technol. 2017;40:45–50.
  • Bazzazzadeh A, Dizaji BF, Kianinejad N, et al. Fabrication of poly(acrylic acid) grafted-chitosan/polyurethane/magnetic MIL-53 metal organic framework composite core-shell nanofibers for co-delivery of temozolomide and paclitaxel against glioblastoma cancer cells. Int J Pharm. 2020;587:119674.
  • Acevedo F, Hermosilla J, Sanhueza C, et al. Gallic acid loaded PEO-core/zein-shell nanofibers for chemopreventive action on gallbladder cancer cells. Eur J Pharm Sci. 2018;119:49–61.
  • Zhu LF, Zheng Y, Fan J, et al. A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. Eur J Pharm Sci. 2019;137:105002.
  • Qasim SB, Zafar MS, Najeeb S, et al. Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. IJMS. 2018;19(2):407.
  • Chen Y-P, Liu H-Y, Liu Y-W, et al. Determination of electrospinning parameters’ strength in poly (D, L)-lactide-co-glycolide micro/nanofiber diameter tailoring. J Nanomater. 2019;2019:1–8.
  • Afshar S, Rashedi S, Nazockdast H, et al. Preparation and characterization of electrospun poly(lactic acid)-chitosan (core-shell) nanofibers with a new solvent system. Int J Biol Macromol. 2019;138:1130–1137.
  • Pakravan M, Heuzey MC, Ajji A. Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning. Biomacromolecules. 2012;13(2):412–421.
  • Li T, Tian L, Liao S, et al. Fabrication, mechanical property and in vitro evaluation of poly (L-lactic acid-co-epsilon-caprolactone) core-shell nanofiber scaffold for tissue engineering. J Mech Behav Biomed Mater. 2019;98:48–57.
  • He M, Jiang H, Wang R, et al. Fabrication of metronidazole loaded poly (epsilon-caprolactone)/zein core/shell nanofiber membranes via coaxial electrospinning for guided tissue regeneration. J Colloid Interface Sci. 2017;490:270–278.
  • Zargarian SS, Haddadi-Asl V. Surfactant-assisted water exposed electrospinning of novel super hydrophilic polycaprolactone based fibers. Artif Cells Nanomed Biotechnol. 2017;45(5):871–880.
  • Suri R, Neupane YR, Mehra N, et al. Sirolimus loaded chitosan functionalized poly (lactic-co-glycolic acid) (PLGA) nanoparticles for potential treatment of age-related macular degeneration. Int J Biol Macromol. 2021;191:548–559.
  • Sedghi R, Shaabani A, Sayyari N. Electrospun triazole-based chitosan nanofibers as a novel scaffolds for bone tissue repair and regeneration. Carbohydr Polym. 2020;230:115707.
  • Zhang M, Li Z, Liu L, et al. Preparation and characterization of vancomycin-loaded electrospun rana chensinensis skin collagen/poly (L-lactide) nanofibers for drug delivery. J Nanomater. 2016;2016:1–8.
  • Mao Z, Li J, Huang W, et al. Preparation of poly (lactic acid)/graphene oxide nanofiber membranes with different structures by electrospinning for drug delivery. RSC Adv. 2018;8(30):16619–16625.
  • Abid S, Hussain T, Raza ZA, et al. Current applications of electrospun polymeric nanofibers in cancer therapy. Mater Sci Eng C Mater Biol Appl. 2019;97:966–977.
  • He M, Xue J, Geng H, et al. Fibrous guided tissue regeneration membrane loaded with anti-inflammatory agent prepared by coaxial electrospinning for the purpose of controlled release. Appl Surf Sci. 2015;335:121–129.
  • Shamsipour M, Mansouri AM, Moradipour P. Temozolomide conjugated carbon quantum dots embedded in core/shell nanofibers prepared by coaxial electrospinning as an implantable delivery system for cell imaging and sustained drug release. AAPS PharmSciTech. 2019;20(7):259.
  • Guimarães PP, Oliveira MF, Gomes AD, et al. PLGA nanofibers improves the antitumoral effect of daunorubicin. Colloids Surf B Biointerfaces. 2015;136:248–255.
  • Guo G, Fu S, Zhou L, et al. Preparation of curcumin loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanofibers and their in vitro antitumor activity against glioma 9L cells. Nanoscale. 2011;3(9):3825–3832.
  • Amna T, Barakat NA, Hassan MS, et al. Camptothecin loaded poly (ε-caprolactone) nanofibers via one-step electrospinning and their cytotoxicity impact. Colloids Surf A. 2013;431:1–8.
  • Li J, Xu W, Li D, et al. Locally deployable nanofiber patch for sequential drug delivery in treatment of primary and advanced orthotopic hepatomas. ACS Nano. 2018;12(7):6685–6699.
  • Liu R, Wolinsky JB, Walpole J, et al. Prevention of local tumor recurrence following surgery using low-dose chemotherapeutic polymer films. Ann Surg Oncol. 2010;17(4):1203–1213.
  • Boedtkjer E, Pedersen SF. The acidic tumor microenvironment as a driver of cancer. Annu Rev Physiol. 2020;82:103–126.
  • Yang GG, Zhang H, Zhang DY, et al. Cancer-specific chemotherapeutic strategy based on the vitamin K3 mediated ROS regenerative feedback and visualized drug release in vivo. Biomaterials. 2018;185:73–85.
  • Eloy JO, Petrilli R, Topan JF, et al. Co-loaded paclitaxel/rapamycin liposomes: development, characterization and in vitro and in vivo evaluation for breast cancer therapy. Colloids Surf B Biointerfaces. 2016;141:74–82.
  • Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1–73.
  • Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278(1):16–27.
  • Roomi MW, Monterrey JC, Kalinovsky T, et al. Patterns of MMP-2 and MMP-9 expression in human cancer cell lines. Oncol Rep. 2009;21(5):1323–1333.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.