102
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Carboxymethyl starch as a solid dispersion carrier to enhance the dissolution and bioavailability of piperine and 18β-glycyrrhetinic acid

, , , , , , ORCID Icon & show all
Pages 30-41 | Received 31 May 2022, Accepted 17 Dec 2022, Published online: 23 Feb 2023

References

  • Haq IU, Imran M, Nadeem M, et al. Piperine: a review of its biological effects. Phytother Res. 2021;35(2):680–700.
  • Gupta RA, Motiwala MN, Dumore NG, et al. Effect of piperine on inhibition of FFA induced TLR4 mediated inflammation and amelioration of acetic acid induced ulcerative colitis in mice. J Ethnopharmacol. 2015;164:239–246.
  • Umar S, Golam Sarwar AH, Umar K, et al. Piperine ameliorates oxidative stress, inflammation and histological outcome in collagen induced arthritis. Cell Immunol. 2013;284(1-2):51–59.
  • Abdelhamid AM, Selim A, Zaafan MA. The hepatoprotective effect of piperine against thioacetamide-Induced liver fibrosis in mice: the involvement of miR-17 and TGF-β/Smads pathways. Front Mol Biosci. 2021;8:754098.
  • Liang X, Zhang L, Li F, et al. Autophagy-regulating N-heterocycles derivatives as potential anticancer agents. Future Med Chem. 2020;12(3):223–242.
  • Christodoulou MI, Tchoumtchoua J, Skaltsounis AL, et al. Natural alkaloids intervening the insulin pathway: new hopes for anti-diabetic agents? Curr Med Chem. 2019;26(32):5982–6015.
  • Miyazawa T, Nakagawa K, Kim SH, et al. Curcumin and piperine supplementation of obese mice under caloric restriction modulates body fat and interleukin-1β. Nutr Metab. 2018;15:12.
  • Quijia CR, Chorilli M. Piperine for treating breast cancer: a review of molecular mechanisms, combination with anticancer drugs, and nanosystems. Phytother Res. 2022;36(1):147–163.
  • Song L, Wang Y, Zhen Y, et al. Piperine inhibits colorectal cancer migration and invasion by regulating STAT3/Snail-mediated epithelial-mesenchymal transition. Biotechnol Lett. 2020;42(10):2049–2058.
  • Si L, Yang R, Lin R, et al. Piperine functions as a tumor suppressor for human ovarian tumor growth via activation of JNK/p38 MAPK-mediated intrinsic apoptotic pathway. Biosci Rep. 2018;38(3):BSR20180503.
  • Mitra S, Anand U, Jha NK, et al. Anticancer applications and pharmacological properties of piperidine and piperine: a comprehensive review on molecular mechanisms and therapeutic perspectives. Front Pharmacol. 2021;12:772418.
  • Zadorozhna M, Tataranni T, Mangieri D. Piperine: role in prevention and progression of cancer. Mol Biol Rep. 2019;46(5):5617–5629.
  • Cui T, Wang Q, Tian X, et al. Piperine is a mechanism-based inactivator of CYP3A. Drug Metab Dispos. 2020;48(2):123–134.
  • Wang C, Cai Z, Wang W, et al. Piperine regulates glycogen synthase kinase-3β-related signaling and attenuates cognitive decline in D-galactose-induced aging mouse model. J Nutr Biochem. 2020;75:108261.
  • Quijia CR, Araujo VH, Chorilli M. Piperine: chemical, biological and nanotechnological applications. Acta Pharm. 2021;71(2):185–213.
  • Su L, Wang Z, Huang F, et al. 18β-Glycyrrhetinic acid mitigates radiation-induced skin damage via NADPH oxidase/ROS/p38MAPK and NF-κB pathways. Environ Toxicol Pharmacol. 2018;60:82–90.
  • Zhou JX, Wink M. Vidence for anti-Inflammatory activity of isoliquiritigenin, 18β glycyrrhetinic acid, ursolic acid, and the traditional chinese medicine plants glycyrrhiza glabra and eriobotrya japonica, at the molecular level. Medicines. 2019;6(2):55.
  • Wang L, Yang R, Yuan B, et al. The antiviral and antimicrobial activities of licorice, a widely-used chinese herb. Acta Pharm Sin B. 2015;5(4):310–315.
  • Luo YH, Wang C, Xu WT, et al. 18β-Glycyrrhetinic acid has anti-Cancer effects via inducing apoptosis and G2/M cell cycle arrest, and inhibiting migration of A549 lung cancer cells. Onco Targets Ther. 2021;14:5131–5144.
  • Cai H, Chen X, Zhang J, et al. 18β-glycyrrhetinic acid inhibits migration and invasion of human gastric cancer cells via the ROS/PKC-α/ERK pathway. J Nat Med. 2018;72(1):252–259.
  • Fatima A, Malick TS, Khan I, et al. Effect of glycyrrhizic acid and 18β-glycyrrhetinic acid on the differentiation of human umbilical cord-mesenchymal stem cells into hepatocytes. World J Stem Cells. 2021;13(10):1580–1594.
  • Wu SY, Wang WJ, Dou JH, et al. Research progress on the protective effects of licorice-derived 18β-glycyrrhetinic acid against liver injury. Acta Pharmacol Sin. 2021;42(1):18–26.
  • Alanazi IS, Emam M, Elsabagh M, et al. The protective effects of 18β-glycyrrhetinic acid against acrylamide-induced cellular damage in diabetic rats. Environ Sci Pollut Res Int. 2021;28(41):58322–58330.
  • Kamisli S, Ciftci O, Taslidere A, et al. The beneficial effects of 18β-glycyrrhetinic acid on the experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mouse model. Immunopharmacol Immunotoxicol. 2018;40(4):344–352.
  • Chen H, Liu H, Tang B, et al. The protective effects of 18β-glycyrrhetinic acid on Imiquimod-Induced psoriasis in mice via suppression of mTOR/STAT3 signaling. J Immunol Res. 2020;2020:1980456.
  • Sui XY, Chu Y, Zhang J, et al. The effect of PVP molecular weight on dissolution behavior and physicochemical characterization of glycyrrhetinic acid solid dispersions. Adv Polym Tech. 2020;2020:1–13.
  • Abbas N, Latif S, Afzal H, et al. Simultaneously improving mechanical, formulation, and in vivo performance of naproxen by co-crystallization. AAPS PharmSciTech. 2018;19(7):3249–3257.
  • Miao Z, Zhang L, Gu M, et al. Preparation of fraxetin long circulating liposome and its anti-enteritis effect. AAPS PharmSciTech. 2021;22(3):110.
  • Tayyab Ansari M, Arshad MS, Hussain A, et al. Improvement of solubility, dissolution and stability profile of artemether solid dispersions and self emulsified solid dispersions by solvent evaporation method. Pharm Dev Technol. 2018;23(10):1007–1015.
  • Fu Q, Jin X, Zhang Z, et al. Preparation and in vitro antitumor effects on MDA-MB-231 cells of niclosamide nanocrystals stabilized by poloxamer188 and PBS. Int J Pharm. 2020;584:119432.
  • Ding Y, Wang C, Wang Y, et al. Development and evaluation of a novel drug delivery: soluplus®/TPGS mixed micelles loaded with piperine in vitro and in vivo. Drug Dev Ind Pharm. 2018;44(9):1409–1416.
  • AbouAitah K, Higazy IM, Swiderska-Sroda A, et al. Anti-inflammatory and antioxidant effects of nanoformulations composed of metal-organic frameworks delivering rutin and/or piperine natural agents. Drug Deliv. 2021;28(1):1478–1495.
  • Zhao X, Liu J, Hu Y, et al. Optimization on condition of glycyrrhetinic acid liposome by RSM and the research of its immunological activity. Int J Biol Macromol. 2012;51(3):299–304.
  • Quan W, Kong S, Ouyang Q, et al. Use of 18β-glycyrrhetinic acid nanocrystals to enhance anti-inflammatory activity by improving topical delivery. Colloids Surf B Biointerfaces. 2021;205:111791.
  • Zhang Z, Chen Y, Deng J, et al. Solid dispersion of berberine-phospholipid complex/TPGS 1000/SiO2: preparation, characterization and in vivo studies. Int J Pharm. 2014;465(1–2):306–316.
  • Baghel S, Cathcart H, O'Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016;105(9):2527–2544.
  • Shahzad Y, Sohail S, Arshad MS, et al. Development of solid dispersions of artemisinin for transdermal delivery. Int J Pharm. 2013;457(1):197–205.
  • Bhujbal SV, Mitra B, Jain U, et al. Pharmaceutical amorphous solid dispersion: a review of manufacturing strategies. Acta Pharm Sin B. 2021;11(8):2505–2536.
  • Dengale SJ, Grohganz H, Rades T, et al. Recent advances in co-amorphous drug formulations. Adv Drug Deliv Rev. 2016;100:116–125.
  • Wang F, Harindintwali JD, Yuan Z, et al. Technologies and perspectives for achieving carbon neutrality. Innovation. 2021;2(4):100180.
  • Chavan RB, Rathi S, Jyothi V, et al. Cellulose based polymers in development of amorphous solid dispersions. Asian J Pharm Sci. 2019;14(3):248–264.
  • Madgulkar A, Bandivadekar M, Shid T, et al. Sugars as solid dispersion carrier to improve solubility and dissolution of the BCS class II drug: clotrimazole. Drug Dev Ind Pharm. 2016;42(1):28–38.
  • Mohapatra S, Siddiqui AA, Anwar M, et al. Synthesis and characterization of novel carboxymethyl Assam bora rice starch for the controlled release of cationic anticancer drug based on electrostatic interactions. AAPS PharmSciTech. 2018;19(1):134–147.
  • Pooresmaeil M, Namazi H. Developments on carboxymethyl starch-based smart systems as promising drug carriers: a review. Carbohydr Polym. 2021;258:117654.
  • Zhang Y, Zhong S, Chi C, et al. Tailoring assembly behavior of starches to control insulin release from layer-by-layer assembled colloidal particles. Int J Biol Macromol. 2020;160:531–537.
  • Antosik AK, Piątek A, Wilpiszewska K. Carboxymethylated starch and cellulose derivatives-based film as human skin equivalent for adhesive properties testing. Carbohydr Polym. 2019;222:115014.
  • Ranjbar E, Namazi H, Pooresmaeil M. Carboxymethyl starch encapsulated 5-FU and DOX co-loaded layered double hydroxide for evaluation of its in vitro performance as a drug delivery agent. Int J Biol Macromol. 2022;201:193–202.
  • Liu L, Zhang Y, Yu S, et al. pH- and amylase-responsive carboxymethyl starch/poly(2-isobutyl-acrylic acid) hybrid microgels as effective enteric carriers for oral insulin delivery. Biomacromolecules. 2018;19(6):2123–2136.
  • Trasi NS, Bhujbal SV, Zemlyanov DY, et al. Physical stability and release properties of lumefantrine amorphous solid dispersion granules prepared by a simple solvent evaporation approach. Int J Pharm X. 2020;2:100052.
  • Xia X, Tan Z, Fan Y, et al. Preparation and evaluation of a novel solid dispersion using leucine as carrier. J Pharm Pharmacol. 2020;72(2):175–184.
  • Ashour EA, Majumdar S, Alsheteli A, et al. Hot melt extrusion as an approach to improve solubility, permeability and oral absorption of a psychoactive natural product, piperine. J Pharm Pharmacol. 2016;68(8):989–998.
  • Thenmozhi K, Yoo YJ. Enhanced solubility of piperine using hydrophilic carrier-based potent solid dispersion systems. Drug Dev Ind Pharm. 2017;43(9):1501–1509.
  • Yusof MR, Shamsudin R, Zakaria S, et al. Fabrication and characterization of carboxymethyl starch/poly(l-lactide) acid/β-tricalcium phosphate composite nanofibers via electrospinning. Polymers. 2019;11(9):1468.
  • El-Sheikh MA. A novel photo-grafting of acrylamide onto carboxymethyl starch. 1. Utilization of CMS-g-PAAm in easy care finishing of cotton fabrics. Carbohydr Polym. 2016;152:105–118.
  • Ashwathy P, Anto AT, Sudheesh MS. A mechanistic review on the dissolution phase behavior and supersaturation stabilization of amorphous solid dispersions. Drug Dev Ind Pharm. 2021;47(1):1–11.
  • Wang W, Cui C, Li M, et al. Study of a novel disintegrable oleanolic acid-polyvinylpolypyrrolidone solid dispersion. Drug Dev Ind Pharm. 2017;43(7):1178–1185.
  • Zafar A, Alruwaili NK, Imam SS, et al. Formulation of chitosan-coated piperine NLCs: optimization, in vitro characterization, and in vivo preclinical assessment. AAPS PharmSciTech. 2021;22(7):231.
  • Li J, Chen T, Deng F, et al. Synthesis, characterization, and in vitro evaluation of curcumin-loaded albumin nanoparticles surface-functionalized with glycyrrhetinic acid. Int J Nanomedicine. 2015;10:5475–5487.
  • Guan J, Liu QY, Zhang XF, et al. Alginate as a potential diphase solid dispersion carrier with enhanced drug dissolution and improved storage stability. Eur J Pharm Sci. 2018;114:346–355.
  • Vaka SRK, Bommana MM, Desai D, et al. Excipients for amorphous solid dispersions. In: Shah N, Sandhu H, Choi DS, editors. Amorphous solid dispersions: theory and practice. New York (NY): Springer; 2014. p. 123–161.
  • Dong LN, Mai YP, Liu Q, et al. Mechanism and improved dissolution of glycyrrhetinic acid solid dispersion by alkalizers. Pharmaceutics. 2020;12(1):82.
  • Wang B, Nethercott MJ, Narula A, et al. pH-Dependent supersaturation from amorphous solid dispersions of weakly basic drugs. Pharm Res. 2021;39(11):2919–2936.
  • Yu JY, Kim JA, Joung HJ, et al. Preparation and characterization of curcumin solid dispersion using HPMC. J Food Sci. 2020;85(11):3866–3873.
  • Amponsah-Efah KK, Mistry P, Eisenhart R, et al. The influence of the strength of drug-polymer interactions on the dissolution of amorphous solid dispersions. Mol Pharm. 2021;18(1):174–186.
  • Kapourani A, Chatzitheodoridou M, Kontogiannopoulos KN, et al. Experimental, thermodynamic, and molecular modeling evaluation of amorphous simvastatin-poly(vinylpyrrolidone) solid dispersions. Mol Pharm. 2020;17(7):2703–2720.
  • Sarpal K, Delaney S, Zhang GGZ, et al. Phase behavior of amorphous solid dispersions of felodipine: homogeneity and drug-polymer interactions. Mol Pharm. 2019;16(12):4836–4851.
  • Frank DS, Matzger AJ. Probing the interplay between amorphous solid dispersion stability and polymer functionality. Mol Pharm. 2018;15(7):2714–2720.
  • Deng Y, Liang Q, Wang Y, et al. The inhibiting role of hydroxypropylmethylcellulose acetate succinate on piperine crystallization to enhance its dissolution from its amorphous solid dispersion and permeability. RSC Adv. 2019;9(67):39523–39531.
  • Chakraborty R, Kalita P, Sen S. Natural starch in biomedical and food industry: perception and overview. Curr Drug Discov Technol. 2019;16(4):355–367.
  • Nadaf S, Jadhav A, Killedar S. Mung bean (vigna radiata) porous starch for solubility and dissolution enhancement of poorly soluble drug by solid dispersion. Int J Biol Macromol. 2021;167:345–357.
  • Lin X, Gao W, Li C, et al. Nano-sized flake carboxymethyl cassava starch as excipient for solid dispersions. Int J Pharm. 2012;423(2):435–439.
  • Borde S, Paul SK, Chauhan H. Ternary solid dispersions: classification and formulation considerations. Drug Dev Ind Pharm. 2021;47(7):1011–1028.
  • Guan Q, Ma Q, Zhao Y, et al. Cellulose derivatives as effective recrystallization inhibitor for ternary ritonavir solid dispersions: in vitro-in vivo evaluation. Carbohydr Polym. 2021;273:118562.
  • Arioglu-Tuncil S, Voelker AL, Taylor LS, et al. Amorphization of thiamine mononitrate: a study of crystallization inhibition and chemical stability of thiamine in thiamine mononitrate amorphous solid dispersions. IJMS. 2020;21(24):9370.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.