2,427
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Nasal residence time and rheological properties of a new bentonite-based thixotropic gel emulsion nasal spray – AM-301

, , , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 103-114 | Received 17 May 2022, Accepted 18 Feb 2023, Published online: 28 Feb 2023

References

  • Gallo O, Locatello LG, Mazzoni A, et al. The Central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol. 2021;14(2):305–316.
  • Kiyono H, Fukuyama S. NALT-versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol. 2004;4(9):699–710.
  • Rodrigues F, Freire AP, Uzeloto J, et al. Particularities and clinical applicability of saccharin transit time test. Int Arch Otorhinolaryngol. 2019;23(2):229–240.
  • Smith DJ, Gaffney EA, Blake JR. Modelling mucociliary clearance. Respir Physiol Neurobiol. 2008;163(1–3):178–188.
  • Elliott MK, Sisson JH, Wyatt TA. Effects of cigarette smoke and alcohol on ciliated tracheal epithelium and inflammatory cell recruitment. Am J Respir Cell Mol Biol. 2007;36(4):452–459.
  • Bhowmik A, Chahal K, Austin G, et al. Improving mucociliary clearance in chronic obstructive pulmonary disease. Respir Med. 2009;103(4):496–502.
  • Bush A, Cole P, Hariri M, et al. Primary ciliary dyskinesia: diagnosis and standards of care. Eur Respir J. 1998;12(4):982–988.
  • Bennett ML, Fountain JM, McCarty MA, et al. Contact allergy to corticosteroids in patients using inhaled or intranasal corticosteroids for allergic rhinitis or asthma. Am J Contact Dermat. 2001;12(4):193–196.
  • Mall MA. Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models. J Aerosol Med Pulm Drug Deliv. 2008;21(1):13–24.
  • Oozawa H, Kimura H, Noda T, et al. Effect of prehydration on nasal mucociliary clearance in low relative humidity. Auris Nasus Larynx. 2012;39(1):48–52.
  • Bellou MI, Syngouna VI, Tselepi MA, et al. Interaction of human adenoviruses and coliphages with kaolinite and bentonite. Sci Total Environ. 2015;517:86–95.
  • Clark KJ, Sarr AB, Grant PG, et al. In vitro studies on the use of clay, clay minerals and charcoal to adsorb bovine rotavirus and bovine coronavirus. Vet Microbiol. 1998;63(2–4):137–146.
  • Park J-H, Shin H-J, Kim MH, et al. Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. J Pharm Invest. 2016;46(4):363–375.
  • Sobsey MD, Cromeans T. Effects of bentonite clay solids on poliovirus concentration from water by microporous filter methods. Appl Environ Microbiol. 1985;49(4):795–798.
  • Fais F, Juskeviciene R, Francardo V, et al. Drug-free nasal spray as a barrier against SARS-CoV-2 and its Delta variant: in vitro study of safety and efficacy in human nasal airway epithelia. Int J Mol Sci. 2022;23(7):4062.
  • Nehrig J, Grosse N, Hohenfeld IP, et al. Efficacy and safety of a drug-free, barrier-forming nasal spray for allergic rhinitis: randomized, Open-Label, crossover noninferiority trial. Int Arch Allergy Immunol. 2023;184(2):111–121.
  • Pathak K. Mucoadhesion; a prerequisite or a constraint in nasal drug delivery? Int J Pharm Investig. 2011;1(2):62–63.
  • Martins PP, Smyth HDC, Cui Z. Strategies to facilitate or block nose-to-brain drug delivery. Int J Pharm. 2019;570:118635.
  • Merkus FW, Verhoef JC, Schipper NG, et al. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev. 1998;29(1–2):13–38.
  • Administration USFD. Inactive ingredient search for approved drug products. [cited 2022 Jan 10]. Available from: https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm.
  • Warnken ZN, Smyth HDC, Davis DA, et al. Personalized medicine in nasal delivery: the use of patient-specific administration parameters to improve nasal drug targeting using 3D-Printed nasal replica casts. Mol Pharm. 2018;15(4):1392–1402.
  • Bleier BS, Debnath I, Harvey RJ, et al. Temporospatial quantification of fluorescein-labeled sinonasal irrigation delivery. Int Forum Allergy Rhinol. 2011;1(5):361–365.
  • Bateman ND, Whymark AD, Clifton NJ, et al. A study of intranasal distribution of azelastine hydrochloride aqueous nasal spray with different spray techniques. Clin Otolaryngol Allied Sci. 2002;27(5):327–330.
  • Bitter C. Transmucosal nasal drug delivery: pharmacokinetics and pharmacodynamics of nasally applied esketamine [Doctoral Thesis]. Basel: University of Basel; 2011.
  • Patent application WO2022053412 – compositions for preventing infections. 2022.
  • Hohlfeld JM, Holland-Letz T, Larbig M, et al. Diagnostic value of outcome measures following allergen exposure in an environmental challenge chamber compared with natural conditions. Clin Exp Allergy. 2010;40(7):998–1006.
  • Calmet H, Inthavong K, Eguzkitza B, et al. Nasal sprayed particle deposition in a human nasal cavity under different inhalation conditions. PLoS One. 2019;14(9):e0221330.
  • Suman JD, Laube BL, Lin TC, et al. Validity of in vitro tests on aqueous spray pumps as surrogates for nasal deposition. Pharm Res. 2002;19(1):1–6.
  • Eccleston GM, Bakhshaee M, Hudson NE, et al. Rheological behavior of nasal sprays in shear and extension. Drug Dev Ind Pharm. 2000;26(9):975–983.
  • “Guideline on the pharmaceutical quality of inhalation and nasal products.”, European Medicines Agency, EMEA/CHMP/QWP/49313/2005 Corr, 2006; 1-27. Accessed Feb 2022
  • Gralton J, Tovey E, McLaws ML, et al. The role of particle size in aerosolised pathogen transmission: a review. J Infect. 2011;62(1):1–13.
  • Keck T, Leiacker R, Riechelmann H, et al. Temperature profile in the nasal cavity. Laryngoscope. 2000;110(4):651–654.
  • Lam K, Tan BK, Lavin JM, et al. Comparison of nasal sprays and irrigations in the delivery of topical agents to the olfactory mucosa. Laryngoscope. 2013;123(12):2950–2957.
  • Scheibe M, Bethge C, Witt M, et al. Intranasal administration of drugs. Arch Otolaryngol Head Neck Surg. 2008;134(6):643–646.
  • Grief SN. Upper respiratory infections. Prim Care. 2013;40(3):757–770.