107
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Hesperetin-loaded polymeric nanofibers: assessment of bioavailability and neuroprotective effect

& ORCID Icon
Pages 240-247 | Received 14 Nov 2022, Accepted 06 Apr 2023, Published online: 19 Apr 2023

References

  • Liu D, Wu J, Xie H, et al. Inhibitory effect of hesperetin and naringenin on human UDP-glucuronosyltransferase enzymes: implications for herb–drug interactions. Biol Pharm Bull. 2016;39(12):2052–2059.
  • Parhiz H, Roohbakhsh A, Soltani F, et al. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res. 2015;29(3):323–331.
  • Hwang SL, Yen GC. Neuroprotective effects of the citrus flavanones against H2O2-induced cytotoxicity in PC12 cells. J Agric Food Chem. 2008;56(3):859–864.
  • Yang Y, Wolfram J, Boom K, et al. Hesperetin impairs glucose uptake and inhibits proliferation of breast cancer cells. Cell Biochem Funct. 2013;31(5):374–379.
  • Zarebczan B, Pinchot SN, Kunnimalaiyaan M, et al. Hesperetin, a potential therapy for carcinoid cancer. Am J Surg. 2011;201(3):329–332; discussion 333.
  • Wang J, Zhu H, Yang Z, et al. Antioxidative effects of hesperetin against lead acetate-induced oxidative stress in rats. Indian J Pharmacol. 2013;45(4):395–398.
  • Deng W, Jiang D, Fang Y, et al. Hesperetin protects against cardiac remodelling induced by pressure overload in mice. J Mol Histol. 2013;44(5):575–585.
  • Yang HL, Chen SC, Senthil Kumar KJ, et al. Antioxidant and anti-inflammatory potential of hesperetin metabolites obtained from hesperetin-administered rat serum: an ex vivo approach. J Agric Food Chem. 2012;60(1):522–532.
  • Hajialyani M, Farzaei MH, Echeverría J, et al. Hesperidin as a neuroprotective agent: a review of animal and clinical evidence. Molecules. 2019;24(3):648.
  • Cimini A, Gentile R, D'Angelo B, et al. Cocoa powder triggers neuroprotective and preventive effects in a human alzheimer’s disease model by modulating BDNF signaling pathway. J Cell Biochem. 2013;114(10):2209–2220.
  • Gupta RK, Patel AK, Shah N, et al. Oxidative stress and antioxidants in disease and cancer. Asian Pac J Cancer Prev. 2014;15(11):4405–4409.
  • Wei L, Deng W, Cheng Z, et al. Effects of hesperetin on platelet-derived growth factor-BB-induced pulmonary artery smooth muscle cell proliferation. Mol Med Rep. 2016;13(1):955–960.
  • Panda DS, Alruwaili NK, Swain K, et al. Ibuprofen loaded electrospun polymeric nanofibers: a strategy to improve oral absorption. Acta Chim Slov. 2022;69(2):483–488.
  • Pattnaik S, Swain K. Cellulose-Based composites and their biomedical applications. Cellulose Chem. Technol. 2022;56(1–2):115–122.
  • Hota SS, Pattnaik S, Mallick S. Formulation and evaluation of multidose propofol nanoemulsion using statistically designed experiments. ACSi. 2020;67(1):179–188.
  • Yadav YC, Pattnaik S, Swain K. Curcumin loaded mesoporous silica nanoparticles: assessment of bioavailability and cardioprotective effect. Drug Dev Ind Pharm. 2019;45(12):1889–1895.
  • Pattnaik S, Pathak K. Mesoporous silica molecular sieve based nanocarriers: transpiring drug dissolution research. Curr Pharm Des. 2017;23(3):467–480.
  • Pattnaik S, Swain K, Lin Z. Graphene and graphene-based nanocomposites: biomedical applications and biosafety. J Mater Chem B. 2016;4(48):7813–7831.
  • Pattnaik S, Swain K, Rao JV, et al. Aceclofenac nanocrystals for improved dissolution: influence of polymeric stabilizers. RSC Adv. 2015;5(112):91960–91965.
  • Pattnaik S, Swain K, Manaswini P, et al. Fabrication of aceclofenac nanocrystals for improved dissolution: process optimization and physicochemical characterization. J Drug Deliv Sci Technol. 2015;29:199–209.
  • Mallick S, Pattnaik S, Swain K, et al. Formation of physically stable amorphous phase of ibuprofen by solid state milling with kaolin. Eur J Pharm Biopharm. 2008;68(2):346–351.
  • Mallick S, Pattnaik S, Swain K, et al. Current perspectives of solubilization: potential for improved bioavailability. Drug Dev Ind Pharm. 2007;33(8):865–873.
  • Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat. 2014;46(1):2–18.
  • Pattnaik S, Swain K, Ramakrishna S. Optimal delivery of poorly soluble drugs using electrospun nanofiber technology: challenges, state of the art, and future directions. WIREs Nanomed Nanobiotechnol. 2023;15(2):e1859.
  • Cook L, Weidley E. Behavioral effects of some psychopharmacological agents. Ann N Y Acad Sci. 1957;66(3):740–752.
  • Soman I, Mengi SA, Kasture SB. Effect of leaves of butea frondosa on stress, anxiety, and cognition in rats. Pharmacol Biochem Behav. 2004;79(1):11–16.
  • Adiga S, Bhat P, Chaturvedi A, et al. Evaluation of the effect of ferula asafoetida linn. gum extract on learning and memory in wistar rats. Indian J Pharmacol. 2012;44(1):82–87.
  • Liang LP, Pearson-Smith JN, Huang J, et al. Neuroprotective effects of AEOL10150 in a rat organophosphate model. Toxicol Sci. 2018;162(2):611–621.
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–358.
  • Ellman G, Lysko H. A precise method for the determination of whole blood and plasma sulfhydryl groups. Anal Biochem. 1979;93(1):98–102.
  • Jones ML, Bancroft JD, Gamble M. 10 - Connective tissues and stains. In: Bancroft JD, Gamble M, editors. Theory and practice of histological techniques. 6th ed. Nottingham: Churchill Livingstone; 2008. p. 135–160.
  • Stahr PL, Grewal R, Eckert GP, et al. Investigating hesperetin nanocrystals with tailor-made sizes for the prevention and treatment of alzheimer’s disease. Drug Deliv Transl Res. 2021;11(2):659–674.
  • Wang J, Li Q, Chen Z, et al. Improved bioavailability and anticancer efficacy of hesperetin on breast cancer via a self-assembled rebaudioside a nanomicelles system. Toxicol Appl Pharmacol. 2021;419:115511.
  • Andrew L, Eagle HW, Alfred JR. Sensitive assessment of hippocampal learning using temporally dissociated passive avoidance task. Bio Protoc. 2016;6:e1821.
  • Zhao X, Liu C, Qi Y, et al. Timosaponin B-II ameliorates scopolamine-induced cognition deficits by attenuating acetylcholinesterase activity and brain oxidative damage in mice. Metab Brain Dis. 2016;31(6):1455–1461.
  • Brandon EP, Mellott T, Pizzo DP, et al. Choline transporter 1 maintains cholinergic function in choline acetyltransferase haploinsufficiency. J Neurosci. 2004;24(24):5459–5466.
  • McHardy SF, Wang HL, Mc Cowen SV, et al. Recent advances in acetylcholinesterase inhibitors and reactivators: an update on the patent literature (2012–2015). Expert Opin Ther Pat. 2017;27(4):455–476.
  • Rajput MS, Sarkar PD. Modulation of neuro-inflammatory condition, acetylcholinesterase and antioxidant levels by genistein attenuates diabetes associated cognitive decline in mice. Chem Biol Interact. 2017;268:93–102.
  • Bellingham MC. A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci Ther. 2011;17(1):4–31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.