193
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

N-(levodopa) chitosan derivative based on click chemistry shows biological functionality in brain cells

, , , , , , , , , , , , , & show all
Pages 439-447 | Received 28 Feb 2023, Accepted 08 Jun 2023, Published online: 27 Jun 2023

References

  • Camacho JA, Campos VM. The phenomenology of pain in Parkinson’s disease. Korean J Pain. 2020;33:90–96. doi: 10.3344/kjp.2020.33.1.90.
  • Palakurthi B, Burugupally SP. Postural instability in Parkinson’s disease: a review. Brain Sci. 2019;9(9):239. doi: 10.3390/brainsci9090239.
  • Dorsey ER, Elbaz A, Nichols E, et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the global burden of disease study 2016. The Lancet Neurology. 2018;17(11):939–953. doi: 10.1016/S1474-4422(18)30295-3.
  • Hernando S, Herran E, Figueiro-Silva J, et al. Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson’s disease. Mol Neurobiol. 2018;55(1):145–155. doi: 10.1007/s12035-017-0728-7.
  • Opara J, Małecki A, Małecka E, et al. Motor assessment in Parkinson′s disease. Ann Agric Environ Med. 2017;24(3):411–415. doi: 10.5604/12321966.1232774.
  • Beitz JM. Parkinson’s disease: a review. Front Biosci. 2014;6(1):65–74. doi: 10.2741/s415.
  • Heumann R, Moratalla R, Herrero MT, et al. Dyskinesia in Parkinson’s disease: mechanisms and current non-pharmacological interventions. J Neurochem. 2014;130(4):472–489. doi: 10.1111/jnc.12751.
  • Reich SG, Savitt JM. Parkinson’s disease. Med Clin North Am. 2019;103(2):337–350. doi: 10.1016/j.mcna.2018.10.014.
  • Hayes MT. Parkinson’s disease and Parkinsonism. Am J Med. 2019;132(7):802–807. doi: 10.1016/j.amjmed.2019.03.001.
  • El Knidri H, Belaabed R, Addaou A, et al. Extraction, chemical modification and characterization of chitin and chitosan. Int J Biol Macromol. 2018;120(Pt A):1181–1189. doi: 10.1016/j.ijbiomac.2018.08.139.
  • Singh R, Shitiz K, Singh A. Chitin and chitosan: biopolymers for wound management. Int Wound J. 2017;14(6):1276–1289. doi: 10.1111/iwj.12797.
  • Montiel-Herrera M, Gandini A, Goycoolea FM, et al. N-(furfural) chitosan hydrogels based on Diels-Alder cycloadditions and application as microspheres for controlled drug release. Carbohydr Polym. 2015;128:220–227. doi: 10.1016/j.carbpol.2015.03.052.
  • Argüelles-Monal WM, Lizardi-Mendoza J, Fernández-Quiroz D, et al. Chitosan derivatives: introducing new functionalities with a controlled molecular architecture for innovative materials. Polymers. 2018;10(3):342. doi: 10.3390/polym10030342.
  • Manek E, Darvas F, Petroianu GA. Use of biodegradable, chitosan-based nanoparticles in the treatment of alzheimer’s disease. Molecules. 2020;25(20):4866. doi: 10.3390/molecules25204866.
  • Wilson B, Samanta MK, Muthu MS, et al. Design and evaluation of chitosan nanoparticles as novel drug carrier for the delivery of rivastigmine to treat Alzheimer’s disease. Ther Deliv. 2011;2(5):599–609. doi: 10.4155/tde.11.21.
  • Zhao Y, Li D, Zhu Z, et al. Improved neuroprotective effects of gallic acid-loaded chitosan nanoparticles against ischemic stroke. Rejuvenation Res. 2020;23(4):284–292. doi: 10.1089/rej.2019.2230.
  • Uppuluri CT, Ravi PR, Dalvi AV. Design and evaluation of thermo-responsive nasal in situ gelling system dispersed with piribedil loaded lecithin-chitosan hybrid nanoparticles for improved brain availability. Neuropharmacology. 2021;201:108832. doi: 10.1016/j.neuropharm.2021.108832.
  • Fernández-Quiroz D, Loya-Duarte J, Silva-Campa E, et al. Temperature stimuli-responsive nanoparticles from chitosan-graft-poly(N-vinylcaprolactam) as a drug delivery system. J Appl Polym Sci. 2019;136(32):47831. doi: 10.1002/app.47831.
  • Fernández-Quiroz D, González-Gómez Á, Lizardi-Mendoza J, et al. Effect of the molecular architecture on the thermosensitive properties of chitosan-g-poly(N-vinylcaprolactam). Carbohydr Polym. 2015;134:92–101. doi: 10.1016/j.carbpol.2015.07.069.
  • Calvo P, Remuñán-López C, Vila-Jato JL, et al. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 1997;63(1):125–132. doi: 10.1002/(SICI)1097-4628(19970103)63:1 < 125::AID-APP13 > 3.0.CO;2-4.
  • Montiel-Herrera M, Miledi R, García-Colunga J. Membrane currents elicited by angiotensin II in astrocytes from the rat corpus callosum. Glia. 2006;53(4):366–371. doi: 10.1002/glia.20290.
  • Appaix F, Girod S, Boisseau S, et al. Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes. PLoS One. 2012;7(4):e35169. doi: 10.1371/journal.pone.0035169.
  • García-Carlos CA, Camargo-Loaiza JA, García-Villa D, et al. Angiotensin II, ATP and high extracellular potassium induced intracellular calcium responses in primary rat brain endothelial cell cultures. Cell Biochem Funct. 2021;39(5):688–698. doi: 10.1002/cbf.3635.
  • Suominen T, Piepponen TP, Kostiainen R. Permeation of dopamine sulfate through the blood-brain barrier. PLoS One. 2015;10(7):e0133904. doi: 10.1371/journal.pone.0133904.
  • Argüelles W, Heras A, Acosta N, et al. Caracterización de quitina y quitosano. Quitina y quitosano: obtención, caracterización y aplicaciones. Ana Pastor de Abram, Lima, Perú: Fondo editorial Pontificia Universidad Católica del Perú; 2004.
  • Jacobsen NE. NMR spectroscopy explained: simplified theory, applications and examples for organic chemistry and structural biology. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2007.
  • Montiel-Herrera M, García-Colunga J. Current profiles of astrocytes from the corpus callosum of newborn and 28-day-old rats. Neurosci Lett. 2010;485(3):189–193. doi: 10.1016/j.neulet.2010.09.009.
  • Abdellatif AAH, Alturki HNH, Tawfeek HM. Different cellulosic polymers for synthesizing silver nanoparticles with antioxidant and antibacterial activities. Sci Rep. 2021;11(1):84. doi: 10.1038/s41598-020-79834-6.
  • Goycoolea FM, Lollo G, Remuñán-López C, et al. Chitosan-alginate blended nanoparticles as carriers for the transmucosal delivery of macromolecules. Biomacromolecules. 2009;10(7):1736–1743. doi: 10.1021/bm9001377.
  • Caro-León FJ, Argüelles-Monal W, Carvajal-Millán E, et al. Production and characterization of supercritical CO2 dried chitosan nanoparticles as novel carrier device. Carbohydr Polym. 2018;198:556–562. doi: 10.1016/j.carbpol.2018.06.102.
  • Uslu B, Biltekin B, Denir S, et al. Differences between solution and membrane forms of chitosan on the in vitro activity of fibroblasts. Balkan Med J. 2015;32(1):69–78. doi: 10.5152/balkanmedj.2015.15102.
  • Ferrazzoli D, Carter A, Ustun FS, et al. Dopamine replacement therapy, learning and reward prediction in Parkinson’s disease: implications for rehabilitation. Front Behav Neurosci. 2016;10:121. doi: 10.3389/fnbeh.2016.00121.
  • De Giglio E, Trapani A, Cafagna D, et al. Dopamine-loaded chitosan nanoparticles: formulation and analytical characterization. Anal Bioanal Chem. 2011;400(7):1997–2002. doi: 10.1007/s00216-011-4962-y.
  • Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol. 2018;109:273–286. doi: 10.1016/j.ijbiomac.2017.12.078.
  • Zhang MQ, Sun DN, Xie YY, et al. Three-dimensional visualization of rat brain microvasculature following permanent focal ischaemia by synchrotron radiation. Br J Radiol. 2014;87(1038):20130670. doi: 10.1259/bjr.20130670.
  • Ceña V, Játiva P. Nanoparticle crossing of blood–brain barrier: a road to new therapeutic approaches to central nervous system diseases. Nanomedicine. 2018;13(13):1513–1516. doi: 10.2217/nnm-2018-0139.
  • Ohta S, Kikuchi E, Ishijima A, et al. Investigating the optimum size of nanoparticles for their delivery into the brain assisted by focused ultrasound-induced blood–brain barrier opening. Sci Rep. 2020;10(1):18220–18233. doi: 10.1038/s41598-020-75253-9.
  • Betzer O, Shilo M, Opochinsky R, et al. The effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study. Nanomedicine. 2017;12(13):1533–1546. doi: 10.2217/nnm-2017-0022.
  • Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28–51. doi: 10.1016/j.addr.2015.09.012.
  • Urbančič I, Garvas M, Kokot B, et al. Nanoparticles can wrap epithelial cell membranes and relocate them across the epithelial cell layer. Nano Lett. 2018;18(8):5294–5305. doi: 10.1021/acs.nanolett.8b02291.
  • Mahadevan G, Valiyaveettil S. Understanding the interactions of poly(methyl methacrylate) and poly(vinyl chloride) nanoparticles with BHK-21 cell line. Sci Rep. 2021;11(1):2089. doi: 10.1038/s41598-020-80708-0.
  • Yu S, Xu X, Feng J, et al. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm. 2019;560:282–293. doi: 10.1016/j.ijpharm.2019.02.012.
  • Machova Z, Mühle C, Krauss U, et al. Cellular internalization of enhanced green fluorescent protein ligated to a human calcitonin-based carrier peptide. ChemBioChem. 2002;3(7):672–677. doi: 10.1002/1439-7633(20020703)3:7 < 672::AID-CBIC672 > 3.0.CO;2-D.
  • Dhanalakshmi V, Nimal TR, Sabitha M, et al. Skin and muscle permeating antibacterial nanoparticles for treating Staphylococcus aureus infected wounds. J Biomed Mater Res B Appl Biomater. 2016;104(4):797–807. doi: 10.1002/jbm.b.33635.
  • Huang T-W, Ho Y-C, Tsai T-N, et al. Enhancement of the permeability and activities of epigallocatechin gallate by quaternary ammonium chitosan/fucoidan nanoparticles. Carbohydr Polym. 2020;242:116312. doi: 10.1016/j.carbpol.2020.116312.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.